Кинематический и силовой анализ механизмов иглы и нитепритягивателя универсальной швейной машины
Кинематический и силовой анализ механизмов иглы и нитепритягивателя универсальной швейной машины
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования КГТУ кафедра «дизайн и технология изделий легкой промышленности» ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К курсовому проекту по дисциплине «Оборудование для швейного производства и основы проектирования оборудования» на тему «Кинематический и силовой анализ механизмов иглы и нитепритягивателя универсальной швейной машины» Автор проекта Горбункова М.В. (подпись, дата) (инициалы, фамилия) Специальность 260901 «Технология швейных изделий» (номер, наименование) Обозначение курсового проекта КП 2068448-260901-03-07 Группа ТШ-51 Руководитель проекта --------------------------------- Ноздрачева Т.М. (подпись, дата) (инициалы, фамилия) Работа защищена Оценка Члены комиссии__________________________ Данилова С. А. Курск 2007 ЗАДАНИЕ на курсовой проект по дисциплине «Оборудование для швейного производства и основы проектирования оборудования» Студентка кафедры «Дизайна и технологии изделий легкой промышленности» III курса ТШ-51 группы Горбункова Марина Владимировна (фамилия, имя, отчество) Тема проекта «Кинематический и силовой анализ механизмов иглы и нитепритягивателя универсальной швейной машины» Исходные данные кинематическая схема механизмов иглы и нитепритягивателя швейной машины 1022 класса; частота вращения главного вала машины - 4800 мин-1; координаты Х и У неподвижного шарнира О2 соединительного звена нитепритягивателя - 18, 26; размеры звеньев механизмов иглы и нитепритягивателя: О1А-14 мм, О1С-12 мм, АС-9 мм, АВ-35 мм, О2Д-24 мм, СД-24 мм, ДЕ-31 мм, СЕ-51 мм; сила полезного сопротивления - 80 сН; масса звеньев механизма иглы: кривошип - 0,019 кГ, шатун - 0,19 кГ, ползун - 0,03 кГ. Основные вопросы, подлежащие разработке: Введение Построение кинематических схем и разметка траекторий. Расчет скоростей звеньев механизма и отдельных точек, построение плана скоростей. Расчет ускорений звеньев механизма и отдельных точек, построение планов ускорений. Силовой анализ механизма иглы. Построение планов сил. Заключение Перечень материалов, предоставляемых к защите: Пояснительная записка 15-20 листов Графическая часть на 1 листе формата А1 Срок предоставления к защите__________________________ Руководитель проекта Ноздрачева Т.М____________ Задание к исполнению принял___________________________ СОДЕРЖАНИЕ Введение 1. Построение кинематической схемы и траекторий рабочих точек механизмов иглы и нитепритягивателя 2.Определение скоростей звеньев механизмов иглы и нитепритягивателя 3.Определениеускорений звеньев механизмов иглы и нитепритягивателя и построение плана ускорений 4.Силовой анализ механизмов Заключение Список используемой литературы Приложения ВВЕДЕНИЕ Целью курсового проекта является обобщение, углубление и закрепление знаний, полученных мною на лекциях и при выполнении лабораторных работ по дисциплине «Оборудование для швейного производства и основы проектирования оборудования», и их применение при решении технических, технологических, научных и экономических задач, возникающих при проектировании швейного оборудования. В процессе работы должна ознакомиться с основными этапами проектирования швейного оборудования, глубоко изучить технологический процесс, осуществляемый на универсальной швейной машине, научиться составлять и анализировать кинематические схемы исполнительных механизмов. Также я должна освоить методику проведения перемещений, скоростей, ускорений звеньев механизмов и их отдельных точек, научиться устанавливать законы изменения во времени этих величин, определять силы, действующие на звенья механизмов, реакции в кинематических парах и давления на станину машины. Таким образом, я должна научиться решать задачи кинематического и динамического анализа механизмов, необходимого для выполнения расчетов проектируемого швейного оборудования. При выполнении курсового проекта нужно учитывать основные задачи, стоящие перед швейной промышленностью по техническому перевооружению производства, применению современных средств механизации и автоматизации оборудования, созданию конкурентоспособного оборудования, экономному использованию материальных и трудовых ресурсов. 1 Построение кинематической схемы и траекторий рабочих точек механизмов иглы и нитепритягивателя Под кинематической схемой понимают изображение механиз-ма, машины или установки, на котором должна быть представлена вся совокупность кинематических элементов и их соединений, пред-назначенных для осуществления регулирования, управления и кон-троля заданных движений исполнительных органов. Кинематическая схема может быть плоской или пространствен-ной (в ортогональном или аксонометрическом изображении). На рис. I представлена плоская кинематическая схема механизмов иглы и нитепритягивателя универсальной швейной машины 1022 класса. На рис. 2 - пространственная конструктивно-кинематическая схема. Машина 1022 класса предназначена для стачивания деталей швейных изделий из хлопчатобумажных и шерстяных тканей одно-линейной двухниточной строчкой челночного переплетения. Ос-новными рабочими механизмами машины являются: кривошипно-шатунный механизм иглы, ротационный механизм челнока, шарнирно-стержневой механизм нитепритягивателя, простой механизм транспортирования материалов, узел лапки. В машине осуществляет-ся централизованная смазка. В курсовом проекте в соответствии с полученными данными необходимо построить кинематическую схему механизмов иглы и нитепритягивателя. Кинематические схемы выполняют в масштабе, который рассчитывается по формуле: Kl = (1) L - действительные размеры кинематического звена, м; l - размер этого звена на кинематической схеме, мм. Kl = 0,014/56=1/4000=0,00025(м/мм) |
Частота вращения главного вала, n, мин-1 | Звено О1А, мм | Звено О1С, мм | Звено АС, мм | Звено АВ, мм | Звено О2D, мм | Звено О2Х, мм | Звено О2Y, мм | Звено СD, мм | Звено DE, мм | Звено CE, мм | | 5200 | 14 | 12 | 9 | 35 | 24 | 18 | 26 | 24 | 31 | 51 | | |
Таблица 1: исходные данные для построения кинематической схемы механизмов иглы и нитепритягивателя Кинематическую схему механизма строят в следующем порядке. Вначале по заданным координатам x и y точек О1 и О2 (табл.1) в выбранном масштабе длин Кl, мм/мм, м/мм, (табл.2) наносят положение неподвижных точек О1 и О2 и проводят ось О1В неподвижной направляющей игловодителя, совпадающей с линией его движения. Затем из центра О1 радиусами О1 А = и О1 С = мм проводят окружности - траектории точек А и С. Далее траектории этих точек разбивают на двенадцать равных частей (в точках (1,2,3,..,12 и 1',2',3'...,12'). Построение схемы механизмов в указанных 12 положениях выполняют с использовани-ем метода засечек. Кинематическая схема и разметка траекторий рабочих точек звеньев механизмов иглы и нитепритягивателя представлены в приложении. Таблица 2: расчетные данные для построения кинематической схемы механизмов иглы и нитепритягивателя |
Масштаб длин, Kl , м/мм | Звено О1А, мм | Звено О1С, мм | Звено АС, мм | Звено АВ, мм | Звено О2D, мм | Звено О2Х, мм | Звено О2Y, мм | Звено СD, мм | Звено DE, мм | Звено CE, мм | | 0,00025 | 56 | 48 | 36 | 140 | 96 | 72 | 104 | 96 | 124 | 204 | | |
Основой для кинематического анализа является кинематическая схема рис.2 Перемещение точки В игловодителя определяется из рассмотрения различных положений кривошипно-шатунного механизма. Палец кривошипа, т.е. шарнир А1 из крайнего верхнего положения А0 проворачивается на угол ц. При этом игловодитель перемещается на величину Sв. Опустив из точки А перпендикуляр А1С на линию движения игловодителя О1В1 получим: Sв = О1В1 - О1 В0 = (СВ1 - О1В1)-(А0В0 - А0О1) (2) т.к. О1А1 = r , а А1В1 = l , тогда получим Sв = (l.cosв - r.cosц) - (l - r) = r.(1 - cosц) - l.(1 - cosв) (3) В полученное выражение ц и в - переменные величины Рассмотрим ? СА1О1 и ? СА1В1 и выразим значение углов СА1 = r.sinц СА1 = l.sinв , тогда sinв = r/l. Sinц (4) Рисунок 2. Разложим cosв в степенной ряд, получим cosв = 1 - + +...... (5) влияние 3 и 4 ..... множителей не имеет значения, ими можно пренебречь, тогда получим выражение и подставим его в формулу (2), получим Sв = r.(1 - cosц) - (6) Дифференцируя это выражение по времени можно получить уравнение скорости и ускорения: S'в = хВ = = щ.r.(sinц + ) (7) S''в =аВ = = щ2.r.( scosц + ) (8) График перемещения точки В График скорости точки В График ускорения точки В Рисунок 3 2 Определение скоростей звеньев механизмов иглы и нитепритягивателя Если точка звена находится в движении относительно стойки и относительно подвижной точки другого типа, то определяются нормальные ускорения для обоих движений, а касатель-ные ускорения находятся графически. При этом вектор нормально-го ускорения точки при движении ее относительно стойки откла-дывается из полюса плана, а при движении относительно под-вижной точки -- из конца ускорения этой точки. При определении скоростей и ускорений задается закон движения ведущего звена. Закон движения задается частотой и направлением вращения ведущего звена. Так как ведущим звеном является кривошип 1, его частота вращения постоянна, т.е. он вращается равномерно, а, следовательно, щО1А=const. Направление движения ведущего звена - по часовой стрелке. Скорости точек А (механизма иглы) и С (механизма нитепритягивателя) рассчитываются по формулам: (9) (10) Векторы скоростей и направлены пер-пендикулярно радиусам О1А и O1C в сторону вращения этих звеньев (Кv, м/(с.мм) масштаб плана скоростей, который выбирается произ-вольно с учетом размеров чертежа). (11) (12) План скоростей начинают строить с выбора произвольной точ-ки на чертеже, которая называется полюсом скоростей (PV). Скорости откладывают в соответствии с масштабом скоростей: Скорость точки D на плане скоростей определяется путем со-вместного решения двух векторных уравнений, (она принадлежит звеньям 4 и 5) сложением векторов: (13) При определении скорости движения точки D за полюсы вра-щения принимаются точки С и О2 . В соответствии с правилами сло-жения векторов из конца первого вектора Vc провопят линию дейст-вия скорости . Затем из полюса Pv проводят линию дейст-вия скорости ( так как первый вектор = 0). Пересечение линий действия скоростей и определяет положение точки d на плане скоростей. Далее все векторы скоростей направляют к найденной точке d и получают дли-ны векторов скоростей и в выбранном масштабе пла-на скоростей КV. Скорость движения точки Е, (глазка нитепритягивателя) опре-деляют по двум векторным уравнениям: (14) где и Соединив полюс PV с точкой е, получают вектор скорости точ-ки Е, т.е. VE = VO . e результате построения треугольник cde дол-жен быть подобен треугольнику CDE. Все стороны их должны быть взаимно перпендикулярны и сходственно расположены. На основании подобия треугольников cde и CDE положение точки е на плане скоростей можно определить путем построения от линии cd треугольника cde подобного треугольнику CDE, не решая двух уравнений. Положение точки е на плане скоростей можно найти также методом засечек. Скорость движения точки В игловодителя определяют путем решения двух векторных уравнений: (15) В соответствии с правилами сложения векторов из конца первого вектора проводят линию действия скорости . Далее из полюса проводят линию действия скорости в направлении перемещения игловодителя (вертикально), так как первый вектор . Пересечение линий действия скоростей и определить положение точки в на плане скоростей. 3 Определение ускорений звеньев механизмов иглы и нитепритягивателя и построение плана ускорений (16) (17) При щ=const касательная составляющая ускорений = 0, = 0. Для построения плана ускорений выбирается масштаб ускоре-ний Ka, м/(с2*мм), который рассчитывается как: Ka = (18) Из произвольно выбранной точки - полюса плана ускорений откладывают (Ра) - откладывают вектор ac = направленный по линии CO1 к полюсу вращения О1 . В результате на плане ускорений получают точку с, к которой направлен вектор aoC = ac . Линейное ускорение точки D определяют путем решения сле-дующих векторных уравнений: , (19) где a02 = 0 (точка О2 неподвижна). Величины нормальных составляющих ускорений, входящих в систему уравнений (19) определяют по формулам: = = = ; (20) = (21) Векторы касательных составляющих ускорений, входящих в систему уравнений (10) на плане ускорений направляют следующим образом: В соответствии с уравнением (10) из конца вектора , т.е. точки с, на плане ускорений проводят вектор параллельно линии CD в направлении от точки D к полюсу вращения - точке С (вниз). Далее из конца вектора проводят перпендикуляр - линию действия . Во втором векторном уравнении (10) вектор , поэтому из полюса ускорений проводят вектор параллельно линии в направлении от точки к точке (влево). Из конца этого вектора проводят перпендикуляр к нему - линию действия . Пересечение линий действий касательных ускорений определяет положение точки d на плане ускорений. Соединив полюс плана ускорений точку с точкой d, получают вектор ускорения . При этом все ранее построенные векторы направлены к точке d. Теорема подобия справедлива и для плана ускорений. Поэтому значительно проще найти положение точки е на плане ускорений, построив от линии cd треугольник cde, подобный треугольнику CDE на схеме механизма и сходственно с ним расположенный. Для нанесения на план ускорений точки е можно использовать метод засечек так же, как и при построении плана скоростей. Для этого соответственно из точек d и c в нужном направлении делают засечки дуг радиусами, равными длине векторов и , мм: (22) На следующем этапе кинематического анализа из полюса плана ускорений откладывают вектор направленный по линии ОА1 к полюсу вращения О1. В результате на плане ускорений получают точку а, к которой направлен вектор . Линейное ускорение точки В определяют путем решения следующих векторных уравнений: (23) где =0 (точка О1 неподвижна). Вектор нормальный составляющей ускорения , входящей в систему уравнений (23) определяют по формулам: . (24) Вектор касательной составляющей ускорения , входящих в систему уравнений (23) на плане ускорений направляют следующим образом: . В соответствии с уравнениями (14) из конца вектора , т.е. точки а, на плане ускорений проводят вектор параллельно линии АВ в направлении к полюсу вращения - точке . Далее из конца вектора проводят перпендикуляр - линию действия . Во втором векторном уравнении (14) вектор , поэтому из полюса ускорений проводят вектор параллельно линии в направлении к точке . Пересечение линий действий касательного ускорения и ускорения определяет положение точки в на плане ускорений. Для нанесения на план ускорений точек центров тяжести, можно воспользоваться теоремой подобия. Например, для точки - центра тяжести звена 5 - можно составить пропорцию: (25) и полученный отрезок отложить из полюса по направлению к точке . План ускорений позволяет определить линейное ускорение любой точки на всяком звене, , используя следующие формулы: (26) Построив план линейных ускорений, можно определить угловые ускорения, , звеньев механизма: (27) Таблица 3: данные для построения ускорений механизмов иглы и нитепритягивателя |
| | | | | | | 11 | 0,54 | 3,4 | 64 | 106 | 0,028 | | 1 | 2,9 | 1,9 | 43 | 70 | 0,058 | | 2 | 45,4 | 2 | 64 | 106 | 0,008 | | |
4 Силовой анализ механизма Силовой анализ выполняется с целью определения усилий между звеньями в кинематических парах и уравнивающей силы и момента на главном валу. Эти задачи имеют большое практическое значение. На основании первой задачи решается вопрос о коэффициенте полезного действия машины, вторая задача позволяет определить необходимую мощность двигателя для приведения в действие машины. Силовой анализ необходим для расчета прочности звеньев, кинематических пар и станин механизмов или машин при их проектировании. Силовой анализ проводят в порядке, обратном кинематическому анализу, т.е. начинают с наиболее удаленных от ведущего звена структурных групп и заканчивают структурной группой первого класса, состоящей из стойки и ведущего звена, т.е. кривошипа. Началом силового анализа является определение сил, действующих на звенья механизмов. Такими силами являются силы тяжести звеньев , силы полезного сопротивления , силы инерции и другие внешние силы. Силы тяжести обычно определяются взвешиванием звеньев. Эти силы прикладываются в центрах тяжести звеньев. Силы полезного сопротивления зависят от выполняемого технологического процесса. Они устанавливаются экспериментально и прикладываются в рабочих точках механизма. Силы инерции рассчитываются по формуле , (28) где m - масса звена, г; - ускорение центра тяжести звена, . Силы инерции приложены в центре тяжести звена и направлены в сторону, противоположную его ускорению. Если звено находится в сложном (плоскопараллельном) движении, то одновременно возникает сила инерции, направленная против ускорения центра тяжести, и момент пары сил инерции, направленный против углового ускорения звена. Эта сила и момент заменяются одной результирующей силой инерции, равной произведению массы звена на ускорение его центра тяжести и приложенной в некоторой точке k. Положение точки k, к которой приложена результирующая сила инерции, определяет плечо h, величина которого вычисляется по формуле , (29) где Мu - момент сил инерции Is - момент инерции звена относительно оси, проходящей через центр тяжести звена; для стержня постоянного сечения; (30) - длина звена, м; - угловое ускорение звена, ; m - масса звена, кг; - ускорение центра тяжести звена, . Подставим числа в (30) формулу: Подставим все в (29) формулу: Для выполнения силового анализа строят схему механизма в определенном масштабе длин , мм/мм, м/мм, и прикладывают в соответствующих точках звеньев действующие силы. После этого приступают к определению реакций в кинематических парах. Для швейных машин силовой анализ, как правило, выполняют без учета сил трения. Их учитывают при определении момента движущих сил, вводя коэффициент, равный 1,2-1,4. Наиболее просто силовой анализ можно выполнить графическим способом - путем построения планов сил в некотором масштабе , Н/мм. Поскольку при силовом анализе в расчет вводят силы инерции и реакции связей, то все силы, действующие на структурные группы 2 класса 2 порядка, находятся в равновесии. Поэтому векторное уравнение этих сил, равняется нулю, а многоугольник сил замкнут. Необходимо помнить, что кинематические цепи, имеющие степень подвижности w=0, в силовом отношении являются статически определенными. Условие статической определимости плоских кинематических цепей записывается в виде: , (31) где n - число подвижных звеньев; - число кинематических пар 5 и 4 классов; 3 - число уравнений статики, которое можно составить для каждого подвижного звена в плоскости. В общем случае реакция в поступательной кинематической паре 5 класса известна лишь по направлению (перпендикулярно к направляющей), величина и точка ее положения неизвестны. Во вращательной кинематической паре 5 класса известна точка приложения реакции (в центре шарнира), величина же и направление ее неизвестны. В кинематической паре 4 класса известны точка приложения (в точке касания) и направление (перпендикулярно касательной к профилям кривых) реакции. Неизвестна лишь ее величина. Для уравновешивания кинематической цепи 1 класса вводят уравновешивающий момент или уравновешивающую силу . Связь между и устанавливается уравнением: , (32) где - плечо силы относительно оси вращения кривошипа. При силовом анализе при вращательном движении кривошипа вводят уравновешивающий момент. Применительно к механизму иглы универсальной швейной машины 1022 класса силовой анализ выполняется в следующей последовательности. Силовой анализ начинают со структурной группы наиболее удаленной от ведущего звена, т.е. со звена II класса, 2 порядка А-2--3-В. Эту цепь мысленно отсоединяют от ведущего звена 1 и стойки 0, при этом вводятся реакции и . Индексы на обозначениях реакций и кинематических пар принято ставить со стороны отсоединенного звена на рассматриваемое. Реакция неизвестна по величине и направлению, реакция приложена в точке В и линия ее действия перпендикулярна направляющей ползуна. Реакцию раскладывают на две составляющие: по звену АВ и перпендикулярно этому звену, т.е. . (33) Векторное уравнение сил, действующих на рассматриваемую кинематическую цепь имеет вид: . (34) Сила полезного сопротивления действует не во всех положениях механизма, а лишь при рабочем ходе иглы. Как видно из уравнения (34) силы известны полностью по величине, направлению и точке положения. В случае, когда силы тяжести малы по сравнению с другими силами, их можно не учитывать. В уравнении (34) не вошли реакции , действующие между звеньями 2 и 3, приложенные в точке В. Эти реакции взаимно уравновешиваются внутри структурной группы. Они относятся к разряду внутренних сил. Эти силы определяются на последующих этапах силового анализа. В уравнении (34) имеются три неизвестные силы, и для их определения рассматривается равновесие звена 2. Для этого звена векторное уравнение сил имеет следующий вид: (35) Для определения необходимо составить уравнение моментов сил относительно точки В: (36) Моменты сил и равны нулю, так как их плечи равны нулю. Тогда: (37) Для получения составляющей реакции с минусом следует повернуть ее на . Далее приступают к построению плана сил. Выбирают произвольную точку и откладывают от нее в соответствии с уравнением (34) поочередно в масштабе векторы известных сил. Модули (величины) векторов сил зависят от выбранного масштаба сил , Н/мм, т.е. (38) Из конца последнего вектора силы проводят линию действия силы перпендикулярно направляющей игловодителя (горизонтально), а из начальной точки проводят линию действия параллельно АВ. Точка пересечения последних двух линий будет концом вектора силы и началом составляющей реакции. В соответствии с уравнением (34) заменяют составляющие и на полную величину реакции . Из плана сил получают: Затем определяют реакцию , приложенную в шарнире . Для этого используют имеющийся уже план сил и уравнение (36). Очевидно, реакция будет направлена по прямой линии, замыкающей начало и конец . Тогда На следующем этапе силового анализа рассматривают структурную группу 1 класса . Векторное уравнение сил записывают в следующем виде: (39) где , равная . Для определения сразу строят план сил в том же масштабе . Начиная от точки проводят векторы , , . Конец последнего вектора соединяют с точкой - началом вектора . Значение реакции составляет: Величину уравновешивающего момента определяют, составив уравнение моментов сил, действующих на первое звено относительно точки , т.е. (40) Знаки «+» и «-» показывают истинное направление . Планы сил строят для нескольких положений механизма, из которых находят наибольшее значение сил и реакций. Эти значения сил используют в расчетах на прочность деталей механизмов и кинематических пар машины. Таблица 4: данные для силового анализа механизма и для построения плана сил |
| | | | | | | h | | 11 | 86 | 41 | -51,6 | 316,8 | -6536 | -186663,9 | 0,0014 | | 1 | 60 | 50 | -68,4 | 316,8 | -456 | -12943,9 | 0,0024 | | 2 | 61 | 88 | -103,2 | 316,8 | -463 | -13119,9 | 0,0042 | | |
ЗАКЛЮЧЕНИЕ Выполняя курсовой проект, я обобщила, углубила и закрепила знания, полученных мною на лекциях и при выполнении лабораторных работ по дисциплине «Оборудование для швейного производства и основы проектирования оборудования», и их применение при решении технических, технологических, научных и экономических задач, возникающих при проектировании швейного оборудования. Также в процессе работы я ознакомилась с основными этапами проектирования швейного оборудования, изучила технологический процесс, осуществляемый на универсальной швейной машине, научилась составлять и анализировать кинематические схемы исполнительных механизмов. Еще я освоила методику проведения перемещений, скоростей, ускорений звеньев механизмов и их отдельных точек, научилась устанавливать законы изменения во времени этих величин, определять силы, действующие на звенья механизмов, реакции в кинематических парах и давления на станину машины. Таким образом, я научилась решать задачи кинематического и динамического анализа механизмов, необходимого для выполнения расчетов проектируемого швейного оборудования. При выполнении курсового проекта я учитывала основные задачи, стоящие перед швейной промышленностью по техническому перевооружению производства, применению современных средств механизации и автоматизации оборудования, созданию конкурентоспособного оборудования, экономному использованию материальных и трудовых ресурсов. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 1. Теория механизмов и механика машин [Текст]: учеб. для втузов/К. В. Фролов [и др.]; Изд. 4-е, испр.; М.: Высш. шк., 2003. 496 с.: ил. 2. Иосилевич Г. Б. Прикладная механика [Текст]: учеб. для вузов/ Под ред. Г. Б. Иосилевича; М.: Высш. шк., 1989. 351 с.: ил. 3. Оборудование швейного производства [Текст]: учеб. для вузов/ Вальщиков Н. М.; М.: Легкая индустрия, 1977, 520 с.: ил. 4. Вальщиков Н. М. Расчет и проектирование машин швейного производства [Текст]: учеб. для вузов/ Н. М. Вальщиков; Л.; Машиностроение, 1973, 343 с. 5. Гарбарук В. П. Расчет и конструирование основных механизмов челночных швейных машин [Текст]: учеб. для вузов/ В. П. Гарбарук; Л.; Машиностроение, 1977, 231 с. 6. Лабораторный практикум по машинам и аппаратам швейного производства [Текст]: учеб. пособие/ Б. А. Рубцов; М.: Легпромбытиздат, 1995, 256 с. Рисунок 1.1 Пространственная кинематическая схема механизмов иглы и нитепритягивателя машины 1022 кл. 1 - главный вал 2 - втулки направляющие - подшипники скольжения 3 - шкив (маховик) 4 - кривошип игловодителя с противовесом 5 - палец кривошипа 6 - шатун 7 - поводок (шарнирная шпилька) 8 - стягивающий винт 9 - ползун 10 - направляющий паз 11 - игловодитель 12, 13 - втулки игловодителя (верхняя и нижняя) 14 - иглодержатель 15 - упорный винт для крепления иглы 16 - игла 17 - рычаг нитепритягивателя, надетый на внутреннее плечо пальца 5 18 - соединительное звено 19 - шарнирный палец 20 - установочный винт для закрепления пальца в корпусе машины 21 - игольчатый подшипник
|