Повышение производительности автогрейдера, выполняющего планировочные работы, совершенствование системы управления
Повышение производительности автогрейдера, выполняющего планировочные работы, совершенствование системы управления
Введение Одной из самых массовых землеройно-транспортных машин, применяемых в дорожном строительстве является автогрейдер. На долю автогрейдера отводятся планировочные и профилировочные работы по возведению земляного полотна. Существующий СНиП предъявляет высокие требования к точности соблюдения геометрических параметров земляных сооружений, в то время, как серийно выпускаемые автогрейдеры у нас в стране и за рубежом, даже оснащенные системами стабилизации рабочего органа не содержат устройств индикации предоставляющих объективную информацию о точности соблюдения геометрических параметров дорожного полотна. Возникло серьезное противоречие между непрерывно возрастающими требованиями к производительности планировочных работ при высокой точности геометрических параметров земляного полотна и отсутствием систем индикации на серийно выпускаемых машинах. В результате этого даже автоматизированный автогрейдер вынужден совершать лишние проходы по обрабатываемому участку. Решить возникшие противоречия позволяет система управления рабочим органом автогрейдера, оснащенная устройствами индикации, которые предоставляют механику-водителю количественную информацию о геометрических параметрах земляного полотна или отклонениях от заданных параметров. Сокращение числа проходов по обрабатываемому участку повышает производительность землеройно-транспортной машины, а обеспечение требуемой геометрической точности существенно сокращает расход дорогостоящих строительных материалов. Появляется возможность проведения планировочных работ без привлечения нивелировщиков. На основании вышеизложенного тема работы, направлена на дальнейшее совершенствование систем управления рабочим органом автогрейдера путем оснащения их устройствами индикации, является актуальной. 1. Состояние вопроса. Цель и задачи исследования 1.1 Критерии эффективности планировочных работ автогрейдера Обоснованный анализ эффективности землеройно-транспортных машин не может быть осуществлен без выявления взаимосвязи системы показателей машины с показателями эффективности их функционирования. При формировании показателей эффективности необходимо принимать во внимание, что показатели должны обеспечивать выявления влияния на эффективность машины всего многообразия определяющих факторов технических параметров, условий производства, эксплуатации и др.; получения обоснованных рекомендаций для выбора рациональных технических параметров машины, совокупность которых определяет ее технико-экономическую эффективность. Кроме того, показатели должны удовлетворять следующим требованиям: иметь технико-экономическую основу; соответствовать цели, достигаемой в результате применения оборудования; иметь иерархическую структуру, т.е. включать частные показатели в более общие. Установление связей между отдельными критериями эффективности осуществляются на основании анализа интегральных показателей. В качестве обобщенного интегрального показателя используют зависимость для расчета приведенных удельных затрат на единицу продукции. , где Z - приведенные затраты; П - эксплуатационная производительность. Величину Z определяют в соответствии с отраслевой инструкцией: , где U - текущие затраты потребителя, связанные с выполнением технологического процесса без учета отчислений на реновацию техники; ЗК - капитальные затраты, связанные с созданием, производством, доставкой и монтажом техники; P - отчисления на реновацию от капитальных затрат; EН - нормативный коэффициент эффективности; КЭ - сопутствующие капитальные вложения потребителя на эксплуатацию техники. Для показателей эффективности характерна иерархическая структура построения, с точки зрения полноты охвата параметров, определяющих протекание процесса с включением частных показателей более низкого уровня в общие. Показатель 1_го уровня целесообразен для оценки комплексов систем и машин, если известно, что коэффициенты удельных приведенных затрат для сравниваемых объектов существенно изменяются. Показатель 2_го уровня имеет то же назначение, что показатель интегральный 1_й, но при условии, что для нового объекта коэффициенты приведенных удельных затрат на эксплуатацию и основные фонды значительно не изменяются по сравнению с эталоном. Он дает возможность оценить экономию энергетических и материальных затрат. Показатели 3_го и 4_го уровня оценивают основные группы подсистем машин или комплексов энергетического и технического назначения. Показатель 5_го уровня - один из важнейших, так как все показатели более высокого уровня могут быть установлены только при известном значении производительности. Показатели более низкого уровня позволяют определить качество машины при неизменных параметрах, входящих в показатели более высокого уровня. Так как часть показателей, входящих в состав такого обобщенного критерия, как удельные приведенные затраты, может быть установлена весьма приблизительно, целесообразней применять более низкие по иерархическому уровню показатели. Показатель производительности для автогрейдера имеет вид м285с. Сравнительная оценка только по показателю производительности, без учета показателей, характеризующих планирующие свойства автогрейдера, не позволяют объективно и всесторонне оценить эффективность машины. В качестве критериев, характеризующих точность обработки грунта автогрейдером, могут быть выбраны различные ограничивающие и экстремальные условия, но общим для них является то, что они являются вероятностными характеристиками случайных функций, описывающих рабочий процесс автогрейдера. Одним из наиболее жестких условий является равенство нулю математического ожидания погрешности и минимум ее дисперсии: или эквивалентное условие - равенство математического ожидания величины параметра точности по номинальному значению и минимум дисперсии: В ряде случаев достаточно задать ограничения по дисперсии: где -???допустимое значение дисперсии. Выполнение условия при незначительном проигрыше в точности землеройной машины, по сравнению с условиями и, может дать значительный выигрыш в других ее показателях, например, уменьшить массу, габариты, стоимость, трудозатраты в эксплуатации и др. Однако в ряде случаев нецелесообразно, а иногда и невозможно использовать абсолютные величины дисперсий для проведения сравнительных оценок точностных параметров машин. В этом случае в качестве критерия точности в работе предлагается использовать, так называемый, коэффициент сглаживания, равный отношению среднеквадратических отклонений параметра, определяемых до и после реализации рабочего процесса. В работе предложено производить оценку планирующей способности автогрейдера двумя коэффициентами сглаживания - в продольном и поперечном направлениях. Недостатком коэффициента сглаживания в поперечном направлении является не совсем корректный выбор параметра, определяемого до реализации рабочего процесса, т.е. определяется отношение среднеквадратических отклонений угла поперечного профиля до и после обработки. Тогда как на формируемый угол поперечного профиля в силу конструктивных особенностей подавляющего большинства конструкций существующих автогрейдеров, основное влияние оказывают вертикальные премещения средней точки переднего моста автогрейдера. Исходя из этого, в данной работе вводится коэффициент передачи возмущающих воздействий от вертикальных перемещений переднего моста автогрейдера в продольном КY и поперечном К направлениях. Коэффициент КY равен отношению среднеквадратических отклонений вертикальной координаты, определяемых после и до реализации рабочего процесса. Коэффициент К равен отношению среднеквадратических отклонений угла поперечного профиля после обработки и среднеквадратических отклонений вертикальной координаты до обработки. Комплексный показатель достаточно объективно характеризует эффективность рабочего процесса, но определение весовых коэффициентов вызывает существенные трудности и связанно с субъективными оценками. Поэтому более целесообразно использовать векторный критерий эффективности, представляющий собой набор единичных показателей, характеризующих автогрейдер с различных сторон. Таким образом, векторный критерий эффективности автогрейдера при выполнении планировочных работ имеет вид: , где Р1 - единичный показатель, характеризующий планирующую способность автогрейдера в продольном направлений КY; Р2 - единичный показатель, характеризующий планирующую способность автогрейдера в поперечном направлении К; Р3 - единичный показатель, характеризующий рабочую скорость автогрейдера V. Таким образом, задача оценки эффективности того или иного усовершенствования автогрейдера или оценки влияния на качество работ того или иного параметра автогрейдера и его системы управления трансформируется в задачу определения векторного критерия при условии, что требуемые тенденции изменения единичных показателей имеют вид Р1 max, Р2 max, Р3 max. Кроме рассмотренных, могут быть и другие критерии эффективности при решении задач обеспечения точности автогрейдера. Их выбор зависит от типа решаемых задач, вида и объема исходной информации и др. На основе вышеприведенного обзора критериев эффективности можно сделать вывод, что для оценки эффективности целесообразно применять более низкие по иерархическому уровню показатели, в частности производительность. На показатель производительности большое влияние оказывает количество проходов автогрейдера по обрабатываемому участку до достижения точности, установленной СНиПом. Особенности рабочего процесса автогрейдера, при проведении планировочных работ, позволяют при сокращении лишних проходов снизить затраты расходного материала. Таким образом перспективным направлением повышения эффективности автогрейдера, при проведении планировочных работ, является разработка новых систем управления рабочим органом, позволяющих добиться заданной точности геометрических параметров земляного полотна за минимальное число проходов по обрабатываемому участку. 1.2 Анализ предшествующих исследований 1.2.1 Анализ математических моделей автогрейдеров Автогрейдерам и системам управления рабочим оборудованием автогрейдеров посвящено значительное число исследований. Был разработан ряд математических моделей автогрейдеров, снабженных автоматической системой стабилизации положения рабочего органа. Так как эти математические модели разработаны в разное время, для различных конкретных задач, они отличаются степенью детализации. В работах В.С. Дектярева и А.М. Васьковского рассматривается автогрейдер, снабженный электрогидравлической системой стабилизации угла наклона отвала в поперечной плоскости. Расчетная схема автогрейдера выполнена в виде одномассовой системы на упругих опорах, математическое описание представлено дифференциальным уравнением второго порядка. Для математического описания автогрейдер может быть представлен механической системой в виде шарнирно сочлененного многозвенника с голономными связями. В работах В.А. Палеева, В.А. Байкалова, В.Е. Калугина и А.Ф. Бакалова предложены обобщенные расчетные схемы автогрейдера, представленные пятизвенной системой с 13-ю степенями свободы и наложенными на нее упруговязкими связями. В зависимости от конкретных задач исследований математические модели различаются наличием дополнительных элементов и связей. В качестве элементов расчетной схемы выбраны: подмоторная рама, хребтовая балка, левый и правый балансиры, передняя ось и тяговая рама с рабочим органом. Математическая модель автогрейдера описывается системой уравнений Лагранжа второго рода. Для решения задач исследования пространственных кинематических цепей, которыми представлен автогрейдер, используется метод переходных матриц. Суть метода состоит в том, что задаются неподвижная система координат, связанная с неподвижным звеном или звеном, движущимся равномерно и прямолинейно, и локальные системы координат, жестко связанные с подвижными звеньями. В работах получены уравнения геометрической связи, определяющие положение произвольной точки локальной системы отсчета относительно однородной, связи между контролируемыми параметрами земляного полотна и значениями обобщенных координат автогрейдера, колебаний автогрейдера и др. В работах В.В. Беляева, В.В. Привалова для описания перемещений элементов расчетной схемы была принята правая ортогональная система координат. Пространственное положение отвала характеризуют вертикальная координата его центральной точки и угол перекоса. Выведены уравнения кинематических связей, определяющих положение произвольных точек звеньев расчетной схемы в неподвижной системе координат в любой момент времени от начала отсчета и устанавливающих связь между положением рабочего органа и параметрами сформированной поверхности. В работе В.А. Калякина предложена математическая модель планировочной машины на базе промышленных тракторов. Проведен анализ конструкций планировочных машин на базе различных промышленных тракторов. В работе Б.Д. Каноныхина в соответствии с методом структурно-кинематического объединения типовых агрегатных подсистем были получены динамические модели колеса, балансирной тележки, остова, структурно-кинематические связи продольного и поперечного движений. На основании динамических моделей агрегатных подсистем синтезируется динамическая модель всей системы в целом: продольного и поперечного движения. 1.2.2 Анализ математических моделей гидроприводов Решение задач анализа и синтеза гидроприводов невозможно осуществлять без их математических моделей, которые необходимо составлять для каждой новой гидравлической схемы. Разнообразные схемы гидроприводов представляют совокупность соединенных между собой гидроэлементов, причем количество функциональных элементов гидросистем невелико: насос, гидромотор, гидроцилиндр, гидролиния, дроссель, редукционный, предохранительный и обратный клапаны и др. Указанные гидроэлементы достаточно глубоко изучены и в зависимости от принятых допущений и поставленных задач исследования описаны с той или иной степенью детализации. В работе Бирюкова С.Т. предлагается методика составления математических моделей гидроприводов, базирующаяся на представлении гидроэлементов в виде многомерных динамических объектов и использующая векторно-матричную форму записи уравнений. Динамические свойства многомерных объектов полностью характеризуются их уравнениями движения, связывающими выходные и входные величины объектов, которые составляются на основе законов физики при рассмотрении процессов преобразования и передачи информации. Линеаризованная математическая модель гидравлического многомерного объекта может рассматриваться как гидравлический многополюсник. Гидропривод в целом можно рассматривать как сложный ГМП, состоящий из соединенных между собой различными способами простых ГМП. Представление математических моделей гидроприводов в виде ГМП позволяет формализовать процесс составления математических моделей и возложить его на ЭВМ. При этом, в зависимости от целей и задач исследования, могут быть сформированы математические модели двух типов: модели, которые устанавливают аналитическую взаимосвязь между внешними воздействиями и выходными величинами без рассмотрения величин векторов, связывающих ГМП между собой, и модели, устанавливающие аналитическую взаимосвязь между векторами гидросистемы. В работе Бакалова А.Ф. отмечается, что для решения задач динамики гидрофицированной машины в целом, когда наибольший интерес представляет движение выходного звена исполнительного электрогидропривода при подаче на вход управляющего воздействия, то есть «макродинамика» гидропривода, его математическое описание может быть значительно упрощено. При этом не будут рассматриваться процессы, связанные с работой отдельных гидроэлементов. При описании электрогидропривода в качестве входного воздействия принята выходная координата порогового элемента, в качестве выходной координаты - перемещение штока гидроцилиндра. В своей работе Беляев В.В. предложил общую передаточную функцию гидропривода. Так как объемный гидропривод обладает такими общими свойствами, как время запаздывания и постоянная скорость перемещения штоков исполнительных гидроцилиндров в установившемся режиме, переходные процессы разгона и торможения штока гидроцилиндра, то можно выделить следующие характерные стадии переходного процесса: 1) чистое запаздывание гид, в течение которого шток находится в покое после включения распределителя; 2) стадию разгона, в течение которой шток разгоняется до номинальной скорости; 3) стадию установившегося движения. Выделенным стадиям можно поставить в соответствие три последовательно соединенных звена - звено чистого запаздывания, апериодическое звено первого порядка и интегрирующее звено. Математическое описание звена чистого запаздывания имеет вид: Qг = Rг, где Rг, Qг - входной и выходной сигналы звена чистого запаздывания. Передаточная функция такого звена определяется по преобразованию Лапласа, и имеет вид: . Свойства апериодического звена первого порядка определяются постоянной времени р, характеризующей его инерционность, и коэффициентом передачи Kи. С учетом того, что Kи=1, передаточная функция имеет вид: . Передаточная функция интегрирующего звена , где K - коэффициент, определяющий скорость штока гидроцилиндра в установившемся режиме. Общую передаточную функцию гидропривода можно записать: . Анализ предшествующих исследований, посвященный математическому описанию гидропривода, позволяет сделать вывод, что элементы гидропривода достаточно хорошо изучены и для достижения поставленной в работе цели могут быть представлены в виде передаточных функций. 1.2.3 Анализ математических моделей микрорельефа грунта Известно, что на точность планировочных работ существенно влияют параметры поверхностей грунта, по которому автогрейдер движется в процессе работы. Для отражения влияния микрорельефа на ЗТМ используются его математические модели. Модели могут быть представлены детерминированными и стохастическо-детерминированными функциями, а также записью реального случайного профиля. Детерминированные модели представляют собой математическое описание неровностей рельефа в виде детерминированных функциональных зависимостей вертикальных координат поверхности от горизонтальных координат. Они менее достоверны по сравнению со стохастическими и имеют ограниченные возможности. Их в основном используют при подтверждении адекватности создаваемых математических моделей, анализе частотных характеристик исследуемых машин и качественных показателей систем управления рабочим органом. Реальный случайный профиль представляет собой замеренные с определенным шагом вертикальные координаты поверхности относительно принятой системы координат. Он имеет ограниченное применение и используется в основном при создании наземных транспортных средств. Для изучения ЗТМ наиболее удобно пользоваться стохастическо-детерминированной моделью земляного полотна. При этом корреляционная функция профиля задается детерминированной моделью, а по ней с использованием рекуррентных соотношений строится на ЭВМ псевдослучайный профиль. Профиль местности может быть условно разделен на макропрофиль, микрорельеф и шероховатость. К макропрофилю относят неровности значительной протяженности и сравнительно большой амплитуды. Шероховатость - это неровности длиной до 0,5 м и малой амплитуды. Макрорельеф и шероховатость не представляет интереса с точки зрения влияния на планировочные свойства автогрейдера. Макрорельеф оказывает очень медленное влияние во времени на положение РО, а шероховатость компенсируется сглаживающей способностью шин. Для оценки влияния микрорельефа на изменения положения РО с достаточной точностью микрорельеф можно описывать двумя функциями микропрофиля по левой и правой колее автогрейдера, а поперечный уклон в произвольном сечении оценивать по вертикальным координатам левой и правой колеи. В настоящее время накоплен обширный материал, описывающий статистические свойства различных типов грунтовых поверхностей. Математическому описанию микрорельефа посвящено много работ как у нас в стране так и за рубежом. Анализ предшествующей литературы показал, что микропрофиль грунтовой поверхности можно представить случайной нормально распределенной функцией, основной характеристикой которой является корреляционная функция R. Большинство грунтовых поверхностей, обрабатываемых автогрейдером, имеет корреляционные функции, которые описываются выражениями: ; , где к,к - коэффициенты, зависящие от типа профиля; = l. V, где V - скорость движения; l - расстояние, пройденное от начала отсчета; к2 - дисперсия статистики микропрофиля поверхности. Для моделирования на ЭВМ данных случайных процессов использованы рекурентные уравнения: для , где ; ; ; , где hд - шаг дискретности времени; x - реализация независимых нормально распределенных чисел с параметрами матожидание m=0, среднеквадратичное отклонение ?=1. Для , где ; ; ; ; ; ; ; ; . Возмущения, воздействующие на ходовое оборудование автогрейдера, зависят не только от параметров обрабатываемой поверхности и рабочей скорости машины, но и от физико-механических свойств опорной поверхности. На автогрейдер действует «сглаженное» возмущение за счёт нивелирующей способности шин и податливости грунта. Согласно работ для грунтов, обрабатываемых автогрейдером, профиль можно считать неизменным и учитывать только приведенную сглаживающую способность шин, за счёт которой опорные элементы ходового оборудования взаимодействуют с микрорельефом по площадке контакта длиной 2 Х0. Это ведет к тому, что на автогрейдер воздействует сглаженный микропрофиль. В работе предлагается в расчетах рабочего процесса автогрейдера использовать схему точечного контакта шин с грунтом, но в качестве микропрофиля необходимо применять сглаженный микропрофиль. Поэтому полученные случайные процессы необходимо подвергнуть «сглаживанию»: , где k = 0,5; MC - интервал усреднения; n=,…,; Nсг - число точек сглаженного профиля; y - ординаты несглаженного профиля. Анализ работ по математическому описанию микрорельефа различных грунтовых поверхностей показал, что статистические свойства микрорельефа достаточно хорошо изучены. Разработанный математический аппарат позволяет моделировать микрорельеф с необходимыми статистическими свойствами, необходимыми для решения задач, поставленных в данной работе. 1.2.4 Анализ математических моделей систем управления При проведении планировочных работ оператор автогрейдера осуществляет управление положением РО, контроль параметров формируемого земляного полотна, управление направлением движения и режимами работы силовой установки. Многообразие функций оператора и высокие требования к точности земляного сооружения являются одной из причин, не позволяющих оператору обеспечивать геометрические параметры формируемой поверхности, требуемые СНиПом. В связи с этим появился целый ряд систем автоматического управления, частично или полностью исключающих оператора из контура управления положением РО. Эффективность автогрейдеров на планировочных и профилировочных работах в значительной степени определяется совершенством систем управления РО. Общим вопросам исследования систем управления землеройных машин и их математическому моделированию посвящены работы Т.В. Алексеевой, В.Ф. Амельченко, В.И. Баловнева, Д.П. Волкова, Б.Д. Кононыхина, Ю.М. Княжева, Э.Н. Кузина, Е.Ф. Малиновского, В.Н. Тарасова, В.С. Щербакова и др. При всем многообразии системы управления могут быть охарактеризованы общими свойствами: - информационными параметрами систем являются вертикальные координаты какой-либо точки отвала и угловое положение отвала относительно гравитационной вертикали; - параметрами управления в большинстве систем управления являются вертикальное и угловое положение РО, обеспечиваемое исполнительными гидроцилиндрами подъема-опускания; - все системы управления созданы как дополнительные устройства к существующим автогрейдерам; - основной принцип действия систем управления заключается в компенсации отклонений отвала от заданного положения под действием внешних возмущающих воздействий. Были проведены работы по повышению точности планировочных работ, направленные на разработку и исследование алгоритмов управления; гидропривода; копирных и бескопирных систем управления; гидромеханических и электрогидравлических систем управления. Анализ предшествующих исследований показал, что, в зависимости от решаемых задач и принятых допущений, системы управления были описаны с различной степенью детализации. Так, в большинстве работ использовался хорошо изученный датчик гравитационного типа, с допущением о том, что основным возмущающим воздействием является момент вязкого трения, возникающий при повороте корпуса датчика. Математическая модель датчика может быть описана дифференциальным уравнением , где Iм - момент инерции маятника датчика; - угол отклонения маятника от гравитационной вертикали; - угол поворота корпуса маятника; mm - масса маятника; lm - расстояние от точки подвеса до центра масс маятника; Dm - коэффициент вязкого трения. Маятник в датчике можно описать следующей передаточной функцией , где и . Это выражение описывает отклонение маятника от гравитационной вертикали , что является динамической ошибкой датчика. При математическом описании необходимо учитывать эту ошибку. Таким образом при математическом описании с датчика поступает сигнал дат равный: дат = . Сигнал датчика, поступая на вход элемента сравнения, сравнивается с сигналом задатчика, а выделенный сигнал рассогласования подается на блок управления гидравлическим исполнительным элементом, который является релейным пороговым элементом. Он описывается как безинерционное реле системой неравенств: где I и R - входные выходные сигналы порогового элемента соответственно; Ro - фиксированное значение выходного сигнала, I1 и I2 - пороги срабатывания релейного элемента. Пороговый элемент представляет собой звено для которого линеаризация недопустима, статическая характеристика такого звена имеет вид Недостатком существующих систем автоматического управления является невозможность визуального контроля точности обработанной поверхности во время производства планировочных работ. Для устранения этого недостатка необходимо в систему автоматического управления ввести устройство индикации, учитывающее динамические свойства человека-оператора, который должен отслеживать по устройству индикации точность обрабатываемой поверхности. Система управления, оснащенная устройством индикации позволит в ряде случаев сократить число проходов автогрейдера по одному и тому же обрабатываемому участку. Таким образом, целесообразно систему управления РО разбить на два контура: автоматического и полуавтоматического управления. Система будет работать в автоматическом режиме до принятия решения человеком-оператором на основе информации от устройства индикации. Система автоматического управления положением РО в поперечной плоскости состоит из последовательно соединенных элементов: - датчика угла наклона РО; - элемента сравнения; - порогового элемента; - исполнительного гидропривода. В полуавтоматическом режиме в систему управления добавляется человек-оператор. Наличие человека-оператора приводит к двум противоречивым результатам. С одной стороны, человек-оператор является наиболее универсальным и гибким звеном: человек способен переработать значительно большую и поступающую по многим каналам информацию, чем машинное звено. С другой стороны, человек уступает машине в скорости, точности выполняемых операций и в возможности длительное время сохранять заданную работоспособность. Как видно из работ, в системе ручного управления оператор формирует управляющий сигнал на основе анализа и обобщения информации от нескольких источников. Управляющий сигнал получается в результате проведения определенных математических операций над координатами, определяющими положение элементов рабочего оборудования. После того, как сформирован управляющий сигнал, оператор вырабатывает решение на отклонение управляющего элемента и осуществляет это отклонение с помощью нервно-мускульного воздействия. Человека-оператора, как элемент в замкнутом контуре ручного управления, можно рассматривать в виде последовательно соединенных трех функциональных звеньев: суммирующего, вычислительного и усилительного. Суммирующее звено по динамическим свойствам представляет собой усилительный элемент с запаздыванием. Второе звено является специфическим вычислительным элементом с самонастройкой. С точки зрения динамики этот элемент обладает свойствами усилительного, инерционного и форсирующего звеньев. Инерционность обусловлена необходимостью выработки решения и зависит от объема информации. Чем меньше параметров обрабатываемой информации, тем меньше инерционность. Форсирующее звено возникает в результате создания оператором форсирующих управляющих сигналов, с помощью которых он стремится компенсировать свою инерционность. Усилительное звено оператора отражает нервно-мускульное воздействие на органы управления. По динамическим свойствам это инерционное звено. Анализ предшествующих работ, посвященных математическому описанию систем управления, показал, что для элементов систем управления РО целесообразно применить формальное математическое описание, аппарат которого разработан в теории автоматического управления и успешно применяется для решения различных задач. Для достижения поставленной в работе цели в систему управления РО автогрейдера необходимо ввести устройство индикации. 1.2.5 Анализ предшествующих исследований проблемы повышения точности планировочных работ, выполняемых автогрейдером В дорожном строительстве огромное значение имеет качество возводимого земляного полотна. Его точностные характеристики такие как уклоны, высотные отметки, линейные размеры, ровность поверхности и др. строго регламентированы СНиПом. Вопросу повышения точности обработки грунта посвящено ряд работ, авторы которых с разной степенью детализации рассматривали процесс планировки земляного полотна и давали рекомендации по повышению точности. В работе Э.А. Степанова исследована зависимость качества планировки от конструктивных параметров автогрейдера. В работах В.С. Дектярева, А.М. Васьковского, А.Н. Пиковской, в трудах ВНИИстройдормаша подробно рассмотрены различные варианты математических описаний и приведены конкретные статические и динамические характеристики элементов систем автоматической стабилизации - гироскопических и гравитационных датчиков угла наклона, релейных элементов, усилителей, электрозолотников, гидроцилиндров. В.С. Дектярев в своей работе, проанализировав причины отклонения от заданных параметров земляного полотна, пришел к выводу, что необходимо сократить зазоры в соединениях деталей рабочего оборудования и механизмов управления и применять автоматические системы управления автогрейдером. В результате экспериментальных и теоретических исследований были созданы два варианта трехпозиционных автоматических регулятора: с контактным измерением величины рассогласования и с потенциометрическим изменением величины рассогласования. А.М. Васьковский в работе, используя опыт по автоматизации землеройно-планировочных машин в отделе автоматики ВНИИСтройдормаша, исследовал рабочий процесс этих машин. Это позволило ему определить важнейшие элементы, подлежащие автоматизации. Стала очевидна необходимость автоматического контроля угла поперечного наклона рабочего органа автогрейдера и автоматическая стабилизация продольного угла наклона рамы бульдозера, способная придать ему высокие сглаживающие свойства, подобные свойствам длиннобазового планировщика. Была предложена методика проектирования систем автоматического управления с целью определения параметров, относящихся к задаче автоматизации. В.А. Палеев в работе предложил применить для повышения точности планировочных работ гидромеханическую систему стабилизации отвала автогрейдера в поперечной плоскости. Рассмотрел изменение угла наклона отвала в поперечной плоскости при изменении угла захвата. Проанализировал влияние координат точки крепления системы стабилизации на качество планирования. Определил параметры гидромеханической системы стабилизации. В.А. Байкалов в работе предложил двухскоростную систему стабилизации рабочего органа автогрейдера. Исследуя систему стабилизации, определил ее основные параметры. А.Ф. Бакалов в работе, исследуя системы стабилизации рабочего органа автогрейдера, предложил повысить быстродействие системы применением корректирующего звена, которое устраняет влияние демпфирования маятника датчика относительно корпуса. В.В. Беляев в работе, проанализировав модель рабочего процесса автогрейдера при выполнении планировочных работ, пришел к выводу, что наиболее существенное влияние на точность обработки грунта оказывают отношения геометрических параметров автогрейдера к параметрам обрабатываемой поверхности. Было предложено с целью повышения планирующей способности автогрейдера исключить жесткие связи между базовой машиной и рабочим органом в поперечной вертикальной плоскости. Был предложен «инвариантный» рабочий орган с опорой на обработанную поверхность. В.Е. Калугин в работе на основе морфологического анализа устройств подвеса тяговой рамы автогрейдеров предложил ряд новых схем подвеса. Как наиболее эффективная была выбрана схема на неповоротных кронштейнах. Рассматривался планировочный процесс при возведении откосов. Проведен анализ влияния зазоров в рабочем оборудовании автогрейдеров на точность планировочных работ. В.В. Привалов в работе, исследуя влияние обрабатываемой поверхности на точность планировочных работ, предложил уменьшить возмущающее воздействие грунта путем применения дополнительных рабочих органов, установленных перед колесами автогрейдера. В.И. Калякин в работе рассмотрел планировочные машины на базе промышленных тракторов. Был предложен ряд инженерных решений совершенствования планировочных машин. Указано на перспективность схем многоскоростных гидроприводов и приводов с переменной скоростью перемещения рабочего органа. Определено условие зоны устойчивой работы систем управления планировочных машин. С наилучшими точностными показателями была признана конструкция полуприцепной машины с шарнирным креплением задней оси к хребтовой балке и дополнительными рабочими органами перед задними колесами тягача. Б.Д. Каноныхин в работе рассмотрел проблемы идентификации, автокоординирования и управления ЗТМ. Была синтезирована динамика координирования рабочих органов управляемых ЗТМ, теория лазерных координаторов и динамика систем управления рабочими органами ЗТМ с лазерными координаторами. В работах рассматривается новое направление в области строительного и дорожного машиностроения - адаптивное машиностроение. В статье проводится анализ инвариантных систем управления процессами грунт-машина-рабочий орган, рассматриваются оптимальные структуры управления повышающие эффективность использования машин при производстве земляных работ. Рассмотренные работы в соответствии с поставленными в них целями и задачами в той или иной степени решали проблему повышения точности земляных работ выполняемых автогрейдером. Однако до настоящего времени отсутствуют работы, направленные на создание устройств индикации систем управления, что не позволяет решить поставленные в данной работе цели. В связи с этим необходимо провести исследование рабочих процессов автогрейдера при выполнении планировочных работ и решить научные и практические задачи, направленные на дальнейшее совершенствование систем управления РО автогрейдера. 1.2.6 Обзор существующих теорий копания грунта В настоящее время существует ряд работ, описывающих различные методы теоретического определения усилий, возникающих при копании грунта землеройно-транспортными машинами, включающих резание грунта и перемещение грунта по отвалу и впереди его. Огромный вклад в создание основ теории резания грунтов принадлежит В.П. Горячкину, Н.Г. Домбровскому, А.Н. Зеленину, Ю.А. Ветрову, К.А. Артемьеву, В.И. Баловневу и др. Существующие теории копания грунта можно условно разделить на две группы, которые отличаются подходами к построению теории: 1) теории, основанные преимущественно на обобщении результатов экспериментальных исследований. Эти полуэмпирические теории более просты, но не ставят целью объяснение или полное описание явлений, возникающих в грунте при копании, и могут оказаться непригодными за пределами области, в которой лежат исходные экспериментальные данные; 2) теории, базирующиеся на основных положениях механики сплошной среды и теории прочности. Данные теории позволяют определить сопротивление резанию и копанию при условии, что известны параметры РО, режим работы и параметры грунта. Однако в реальных условиях большинство этих параметров носят случайный характер. Поэтому для создания математических моделей рабочих процессов ЗТМ, при проведении планировочных работ, силовое воздействие со стороны грунта при копании должно оцениваться как случайная функция. В работе случайный процесс, изменения реакции Е грунта на отвале автогрейдера, предлагается представить в виде: Е = Ет + Еф, где Ет - низкочастотный тренд; Еф - высокочастотная составляющая, которая изменяется по случайному закону нормального распределения. Корреляционные функции случайных флюктуаций можно представить в виде: , где ф2 - дисперсия флюктуаций; ф и ф - параметры корреляционной функции. Значения ф и ф приведены в табл. 1.2. Таблица 1.2. Значения параметров корреляционной функции для определения флюктуаций Еф |
Предел прочности | Параметр | | | грунта, МПа | ф | ф | | 0 - 0,2 | 0,8 - 1,5 | 2,5 - 8 | | 0,2 - 0,4 | 1,2 - 1,8 | 4 - 10 | | 0,4 - 0,6 | 1,5 - 2,0 | 6 - 12 | | 0,6 - 0,8 | 1,8 - 3,0 | 8 - 16 | | |
Коэффициенты вариации флюктуации ф составляющих сопротивления копанию приведены в табл. 1.3. Для определения низкочастотного тренда Ет реакции грунта можно использовать различные теории копания. В работах для этой цели предложено использовать теорию копания, предложенную К.А. Артемьевым и его учениками. Таблица 1.3. Коэффициенты вариации составляющих сопротивления копанию |
Предел | Составляющие сопротивления копанию | | прочности грунта, МПа | касательная | нормальная | боковая | | 0 - 0,2 | 0,08 - 0,1 | 0,1 - 0,12 | 0,08 - 0,09 | | 0,2 - 0,4 | 0,11 - 0,14 | 0,14 - 0,16 | 0,08 - 0,1 | | 0,4 - 0,6 | 0,14 - 0,17 | 0,17 - 0,2 | 0,09 - 0,1 | | 0,6 - 0,8 | 0,19 - 0,22 | 0,22 - 0,24 | 0,09 - 0,1 | | |
Горизонтальная составляющая вектора силы сопротивления копанию грунта ножом криволинейного профиля постоянного радиуса кривизны с острой режущей кромкой применительно к отвалу автогрейдера выражается в виде: Wx = . sin2 + Wпр. sin , где Ех, Еу - соответственно горизонтальная и вертикальная составляющая силы сопротивления резанию грунта при лобовом копании; Wпр - сопротивление перемещению призмы волочения; 1 - коэффициент трения грунта по металлу; - угол захвата отвала. При косом копании вертикальная Еу и поперечная Еz составляющие силы резания определяются Еу = Еу. sin ; Ez = Ex. cos . , где р - объемная масса грунта в призме волочения; g - ускорение свободного падения; b - длина отвала; Hг - высота отвала по хорде без участка, погруженного в грунт;
Страницы: 1, 2
|