Разработка и расчет двигательной установки на базе стационарного плазменного двигателя
Разработка и расчет двигательной установки на базе стационарного плазменного двигателя
15 Министерство образования и науки Украины Харьковский национальный аэрокосмический университет им. Н. Е. Жуковского «ХАИ» Кафедра энергосиловых установок о двигателей ЛА Разработка и расчет двигательной установки на базе стационарного плазменного двигателя пояснительная записка к курсовой работе по курсу «Основы теории и функционирования плазменных ускорителей» Студент гр. xxxxxxxxxxxxxx. ______________ ________________ Консультант Доцент xxxxxxx Канд. тех. наук xxxxxxxxx. Нормконтроль Ст. прxxxxx, к. т. н. xxxxxxxxxx. Харьков 2008г Введение Космические летательные аппараты, используемые для работы на различных орбитах вокруг Земли и для межпланетных полетов внутри солнечной системы, в большинстве случаев оснащены двигательными установками на основе электрореактивных двигателей, которые создают тягу необходимую для изменения положения летательного аппарата в космическом пространстве. Использование такого типа движителей целесообразно, так как они обеспечивают заданную тягу при меньших затратах рабочего тела по сравнению с двигателями другого типа. С помощью электрореактивных двигательных установок можно решать следующие задачи: коррекцию орбит искусственных спутников Земли; обеспечение ориентации искусственных спутников Земли; выведение этих спутников на заданную орбиту; перевод космических аппаратов с опорной (околоземной) орбиты на более высокую, включая и задачи вывода космического летательного аппарата на геостационарную орбиту; обеспечение полета космического ЛА к другим планетам солнечной системы, кометам, астероидам и т.д. Список условных обозначений, индексов и сокращений bk - ширина ускорительного канала, м; Cт - цена тяги, Н/Вт; D - средний диаметр движителя, м; Dвп, Rвп - диаметр и радиус внутреннего полюсного наконечника, м; Dнп, Rнп - диаметр и радиус наружного полюсного наконечника, м; Dу - габаритный размер движителя, м; e - единичный заряд, Кл; - токовый эквивалент массового расхода рабочего тела, А; Ip - разрядный ток, А; Iуд - удельный импульс, м/с; lk - длина ускорительного канала, м; M- масса атома ксенона, кГ; , - массовый расход рабочего тела через анодный блок и катод, кГ/с; Nи - кинетическая мощность потока ионов, Вт; Np - разрядная мощность, Вт; Nт - тяговая мощность, Вт; P - тяга движителя, Н; Up - разрядное напряжение, В; ?к - толщина выходных кромок разрядной камеры, м; ?т - тяговый КПД движителя; ?i - потенциал ионизации рабочего тела, эВ; ?дв - ресурс движителя, с; КПД - коэффициент полезного действия; РК - разрядная камера; РТ - рабочее тело; СПД - стационарный плазменный двигатель; ЭРД - электроракетный двигатель 1. РАСЧЕТ ОСНОВНЫХ ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК И ОСНОВНЫХ РАЗМЕРОВ СПД Расчёт основных характеристик и основных размеров СПД произведён в соответствии с экспериментально-теоретическими методическими разработками, изложенными в [1, 2, 3, 4], в которых приведены некоторые промежуточные расчёты и дано более подробное объяснение используемых далее соотношений. К числу основных параметров, с помощью которых можно описать СПД типовой схемы, представленной на рис. 1, относятся: а) диаметр наружной поверхности ускорительного канала Dн, определяющий типоразмер модели (М-70, М-100, М-140, М-200, М-290); б) средний диаметр разрядной камеры D; в) ширина канала bк; г) длина канала lk; д) толщина выходных кромок разрядной камеры ?k; Для общей характеристики конструкции движителя используются также габаритные размеры Dу и lу, внутренний диаметр наружного полюсного наконечника Dнп=D+bk+2·?k и диаметр внутреннего полюсного наконечника Dвп=D-bk-2·?k. В качестве основной задачи расчёта рассматривается задача по определению совокупности значений перечисленных размеров, а также параметров магнитной системы (количество ампер-витков и размеры элементов магнитопровода), которые обеспечивают выполнение заданных требований. Перечисленные размеры определяются с использованием величины среднего диаметра движителя, что должно обеспечить идентичность относительного распределения потенциала и других локальных параметров в РК, и, т.о., обеспечить выполнение условий подобия процессов ионизации и ускорения рабочего тела (РТ) в РК. Как следствие, это позволяет ожидать идентичности интегральных характеристик моделей различного масштаба в сопоставимых условиях работы. В качестве критерия подобия используется условие [4], где ?и - средняя длина пробега атома РТ до ионизации, - массовый расход РТ через канал с площадью проходного сечения Sk. Постоянство этого соотношения при прочих равных условиях ограничивает, в частности, минимальную величину концентрации (?1019 m-3) РТ в РК и, т.о., позволяет определить минимальное значение массового расхода, необходимого для эффективной ионизации и ускорения РТ в движителе. В случае использования ксенона в качестве РТ для достижения приемлемого тягового КПД условие минимального массового расхода приобретает следующий вид . Суммарный массовый расход двигателя определяется как . Подставляя данные, рассматриваемого, в качестве примера, технического задания (ТЗ), получаем кг/с. При условии, что суммарный массовый расход определяется расходами через анодный блок - и через катод - , полагая в первом приближении, что расход через анодный блок для рассматриваемого ТЗ определяем как . Исходя из ограничения на минимальную величину массового расхода, определяем значение среднего диаметра D=0,06 м. На основе анализа накопленного опыта по разработке и эксплуатации СПД определены соотношения основных геометрических размеров движителя с тем, чтобы при различных значениях массового расхода и мощности достигался режим работы СПД близкий к оптимальному: ширина ускорительного канала bk=0.25·D=0.015м; толщина выходной кромки разрядной камеры =0.006 м; протяжённость ускорительного канала lk=bk+2·?k.= 0.027 м . Для рассматриваемого ТЗ bk=0.02 м, , lk=0.036 м. Наружный диаметр ускорительного канала определяется как DH=D+bk=0.075 м. Внутренний диаметр ускорительного канала определяется как DB=D-bk=0.06 м. Габаритные размеры движителя определяются как и . 1.1 Определение тяговой и кинетической мощностей струи ионов Тяговую мощность струи ионов определяем по формуле Подставляя значения, получаем . Кинетическую мощность ионного потока на выходе из РК определяем по формуле где в зависимости от сорта РТ и разрядного напряжения коэффициенты: характеризует разброс угла вылета ионов относительно оси СПД; - разброс ионов по энергии. Больший разброс соответствует меньшему напряжению Up. = 0,95…0,97 и = 0,93…0,98 для Хе в диапазоне Up=200…300 B [1, 3]. Принимаем = 0,95 и = 0,95. Тогда величина кинетической мощности струи ионов Вт. 1.2 Определение протяжённости слоя ионизации РТВ качестве характерной толщины lс слоя, в котором преимущественно происходит ионизация РТ, выбираем такую величину, которая обеспечивает вероятность ионизации РТ не менее 95%. Тогда согласно [1, 3],1.1где ?и - средняя длина пробега атома до ионизации ударом электрона; - средняя, на протяжении слоя ионизации, скорость движения атомов РТ вдоль РК, определяемая температурой анода; =- коэффициент скорости ионизации атома Хе при сечении ионизации ?i и скорости электронов ve; - среднее, на протяжении слоя ионизации, произведение концентрации электронов на коэффициент скорости ионизации; k= - постоянная Стефана-Больцмана; Та=800…1000 К - диапазон температуры анода при разрядном напряжении от 150 до 350 В; =12,1 эВ - потенциал ионизации атома ксенона; e= Кл - единичный заряд; Sk - площадь поперечного сечения ускорительного канала.Площадь поперечного сечения ускорительного определяем по формуле.Подставляя полученные ранее значения, определяем.По формуле 1.1 определяем протяжённость слоя ионизации . Полагая, что 95% РТ ионизируется, а затем и ускоряется уже в виде ионов разностью потенциалов , сосредоточенной на протяжении слоя ионизации до средней скорости Vион, определяем концентрацию электронов исходя из условия неразрывности потока массы в РК: , где кг - масса иона ксенона; В - перепад потенциала в слое ионизации при потенциале ионизации ксенона - ?и=12.1 В. Подставляя полученные ранее значения, получаем . Рассчитанная концентрация электронов соответствует режиму работы движителя близкому к оптимальному. 1.3 Расчет разрядного тока и напряжения разрядаРазрядное напряжение определяем с учётом т.н. “эквивалентной разности потенциалов” участка, на котором преимущественно происходит ускорение ионного потока, прикатодного падения потенциала В, а также суммы перепадов потенциала вблизи анода (??и) и перепада потенциала в слое ионизации .Эквивалентная разность потенциалов, которая определяет ускорение ионов, вычисляется по формуле: 1.2где kа - коэффициент аккомодации энергии ионов поверхностью стенки принимается как kа=1; - токовый эквивалент массового расхода; - коэффициент, учитывающий долю ионного тока, выпадающего на стенки РК на протяжении (см. рис. 1.2) слоя ионизации и ускорения (СИУ) - lСИУ; Nи - кинетическая мощность струи ионов. Коэффициент рассчитывается по эмпирической формуле 1.3Величина lСИУ может быть определена на основе анализа экспериментальных данных, полученных с использованием СПД различных типоразмеров. Результаты анализа указывают на то, что СИУ занимает область РК, в которой радиальная составляющая индукции магнитного поля на средней линии канала (см. рис. 2). Полагая, что величина магнитного поля значительно спадает на протяжении lk по экспоненциальной зависимости, величина может быть определёна с достаточной точностью из соотношения,где - максимальная (вблизи выхода из РК) величина индукции магнитного поля на средней линии ускорительного канала (определяется далее), а - протяжённость ускорительного канала, определённая ранее.Рис. 2. Локализация слоя ионизации и ускорения в РК движителя ? - Угол поворота профиля РК после приработки ().---- Профиль РК по окончанию проектировочного периода (?дв) работы СПД. Пунктиром обозначены линии равного потенциала ускоряющего электрического поля.Величину определяем условиями, необходимыми для обеспечения азимутального дрейфа электронов в РК и прямо-пролётного движения ионов - для ларморовских радиусов электрона Rл.е и иона Rл.и должны выполняться соотношения Rл.е<<bk и Rл.и >>bk. При этом экспериментальными данными об интегральных характеристиках СПД различных типоразмеров подтверждено, что для режимов близких к оптимальным выполняется соотношение . Тогда подставляя определённые ранее значения bk и Up, вычисляеми протяжённость СИУ.Подставляя значения в 1.3, получаем .Токовый эквивалент массового расхода рассчитываем с учётом определённого ранее значения массового расхода по формулеА.Подставляя в 1.2 полученные ранее величины, рассчитываемВ.Определяем разрядное напряжениеВ.Определяем оценочное значение разрядного тока по формуле.Проверяем условия и оценивая напряжённость электрического поля как В/м. При =24.7 mTl рассчитываем Rл.е? 1.5·10-3 м<<bk=0.02 м и Rл.и?2,2 м>>bk, что подтверждает выполнение условий “замагниченности” электронов и прямо-пролётного движения ионов в РК в скрещенных электрическом и магнитном полях.1.4 Расчет КПД и ресурса движителяРазрядную мощность расчитываем как.Для данных ТЗ .Цену тяги определяем по формуле . Подставляя значения, получаем . Определяем тяговый КПД по формуле . С учётом рассчитанных значений . Далее рассчитываем параметры, определяющие ресурс двигателя. Рассчитываем период приработки РК двигателя, в течение которого происходит снижение и стабилизация скорости эрозии выходных кромок РК потоком ионов , где - величина тока ионов, бомбардирующих стенку РК. , где - объёмный коэффициент распыления поверхности стенок РК (материал - АБН) ионами Хе при разрядном напряжении 460 В [1-3]. . Толщина кромки разрядной камеры, которая распыляется ионами за произвольное время ?, определяется зависимостью , 1.4 где - константа (м), определяемая далее; - время работы двигателя. Толщину кромки разрядной камеры , которая распыляется ионами за время (в течение которого происходит снижение скорости эрозии из-за поворота профиля эродирующего участка РК на угол ?=150…200), вычисляем по формуле , где - длина эродирующего участка (см. рис. 2) соответствует протяжённости СИУ в РК движителя; принимается ?=170. Рассчитывается величина м. По формуле 1.4 определяем константу м - глубина эрозии за период приработки РК. Рассчитываем толщину стенки РК, необходимую для обеспечения требуемого ресурса работы движителя по формуле 1.2 м. Для того чтобы движитель мог функционировать в течение заданного ресурса времени, величина должна быть меньше, чем толщина выходных кромок разрядной камеры . Проверка этого предположения показывает, что Т.о., требование по обеспечению заданного ресурса работы РК СПД выполнено.
|