рефераты курсовые

Регулирование давления в рабочем пространстве дуговой сталеплавильной печи ДСП-25Н5

p align="left"> Таблица 2 - Характеристики систем автоматического регулирования электрического и теплового режимов дуговых печей

Система

Регулируемый параметр

Регулирующее воздействие

Система регулирования соотношения между напряжением и током фазы

Сопротивление дуги и примыкающего участка электрода

Перемещение электрода

Система регулирования полезной мощности

Количество электроэнергии, израсходованной в течение заданного времени

То же

Система переключения ступеней напряжения

Время периода плавки, количество израсходованной электроэнергии, температура футеровки

Включение привода переключателя печного трансформатора

Система регулирования давления газов в рабочем пространстве печи

Давление газов

Изменение проходного сечения газоотводящего устройства

Примечание. Системы регулирования соотношения между напряжением и током и стабилизации полезной мощности устанавливаются на каждой фазе печной установки.

Следует отметить, что специальные автоматические устройства, а также и схемные решения в недостаточной степени удовлетворяют требованиям точности и надёжности. То же относится к отдельным электромеханическим устройствам автоматизации технологического процесса плавки, т.е. автоматические регуляторы и серийные автоматические регуляторы не находят широкого применения в системах управления процессом плавки в дуговых печах. Необходимо использовать более надёжное и точное оборудование для этих целей (например, контроллеры).

Ещё более эффективным оказывается комплексное решение проблем управления процессом плавки с помощью АСУТП (преимущества которой перед локальными системами были описаны выше). До внедрения последних собственно процессами выплавки металла повсеместно управляли ручным способом, руководствуясь оперативной информацией о ходе плавки.

В частности, отношение CO2/CO позволяет повысить точность регулирования окислительно - восстановительного потенциала рабочего пространства печи.

ПФ ТОО “Кастинг” занимает далеко не последнее место среди предприятий отрасли по уровню автоматизации. Здесь применяют такие автоматизированные системы (АС) как - АСУТП, АСУП (автоматизированные системы управления предприятием), АСОДУ (автоматизированные системы диспетчерского управления). Постоянно проводится модернизация систем АСУТП и расширение круга выполняемых ими задач.

Эти системы нацелены на оптимальное решение комплекса взаимосвязанных задач электрического, энергетического, технологического и организационно - экономического характера на базе применения ЭВМ (таблица 3).

Таблица 3 - Функции АСУ ТП дуговой плавки

Операция

Источник информации

Адреса информационных сообщений и управляющих команд

1

2

3

Учёт поступления шихтовых материалов

Приращение сигналов тензодатчиков закромов для хранения шихтовых материалов

Устройство печати, дисплей (по запросу обслуживающего и руководящего персонала)

Учёт расходования шихтовых материалов

Уменьшение сигналов тех же датчиков или использование сигналов датчиков дозаторов шихты

То же

Учёт динамики аккумуляции шихты на складе

Сопоставление прихода и расхода шихты

То же

Расчёт оптимального состава шихты, управление процессом её набора и загрузки в печь

Сигналы датчиков расходных бункеров и команды обслуживающего персонала

Автоматические дозаторы компонентов шихты, машинисты магнитно - грейферных кранов

Продолжение таблицы 3

1

2

3

Оперативный контроль по сводным (расчётным) показателям электрического, теплового и технологического режимов плавки

Комплекс контрольно - измерительных приборов

Устройство печати, дисплей (по запросу), ЭВМ в режиме управления

Обеспечение обслуживающего персонала оперативной информацией о ходе плавки

То же

Устройство печати, дисплей (по запросу), система сигнализации

Оптимальное управление электрическим, тепловым и технологическими процессами плавки

То же с использованием заложенных в память ЭВМ математических моделей и программ

Обслуживающий персонал (выдача советов по ведению плавки) или исполнительные механизмы (непосредственное взятие УВК)

Обеспечение равномерного распределения мощности по фазам

Комплекс контрольно - измерительных приборов

Регуляторы мощности (непосредственное взятие УВК)

Расчёт сводных технико - экономических показателей

Комплекс контрольно - измерительных приборов и ручной ввод информации

Устройство печати, дисплей (по запросу)

Учёт выполнения производственной программы

То же

То же

Связь с вышестоящими уровнями

То же

АСУ ТП цеха и АСУП

Оперативная паспортизация процесса плавки

То же

Руководство цеха

В связи с особенностями процесса плавки в дуговых печах признана рациональная децентрализация структуры АСУТП, в которой вместо одной мини-ЭВМ используют несколько микроЭВМ, выполняющих однородные функции переработки информации и её использования для управления в одном случае - электрическими параметрами, в другом - технологическими, в третьем - для расчётов плавильной шихты и т.д.

Однако перед нами стоит задача не глобального управления всем технологическим процессом изготовления готовой продукции, а всего лишь создание локальной системы управления одним технологическим параметром.

Исходя из выше изложенного, определяем уровень и источники эффективности системы в целом.

В курсовой работе ставим задачу разработки локальной системы автоматизации технологического агрегата - печи. Источниками экономической эффективности для данного уровня решения задачи будут являться:

- повышение культуры производства;

- повышение качества продукции;

- повышение качества труда;

- повышение эффективности использования оборудования.

6 Анализ технологической схемы, формирование требований, разработка задания

В результате изучения технологического процесса было определено:

1. Технологическое назначение промышленной установки в общем потоке производства предприятия.

Данный агрегат является одним из основных, так как не будет печи, не будет и всего производства на заводе ПФ ТОО "Кастинг" (да и на любом заводе, занимающимся выплавкой стали). Кроме того, дуговая печь может быть довольно хорошо герметизирована, сгорающие графитовые электроды поддерживают в ней восстановительный характер атмосферы, что позволяет полностью раскислить металл. Она представляет собой агрегат, в котором легко управлять выделяемой мощностью. Поэтому наиболее ответственные сорта стали, требующие тщательной очистки, или высоколегированные, такие как шарикоподшипниковая, электротехническая, инструментальная, нержавеющая, жаропрочная, выплавляются в дуговых сталеплавильных печах (ДСП).

1.1. Показатели, характеризующие качество:

Конечным продуктом плавки является сталь определённой марки. Марки стали отличаются друг от друга содержанием легирующих элементов, и, в зависимости от этого имеют различное предназначение. Для того чтобы получить надлежащее качество стали необходимо в правильном количестве подавать в печь ферросплавы, выдерживать необходимую температуру металла в печи, время и режим плавки, контролировать слив шлака во время работы печи и химический состав стали взятием пробы и проведением анализа в экспресс - лабораториях.

Температура металла при выпуске стали от 1600oC до 1640oC. Выше нагревать металл нельзя, так как увеличивается содержание фосфора в стали, т.е. фосфор со шлака начинает переходит назад в металл.

Температура футеровки во время плавки до 1100оС - 1900оС. Температура 1900oC - критическая.

Химический состав шлака (хим. состав):

SiO2 - оксид кремния,

Al2O3 - оксид алюминия,

CaO - оксид кальция,

MgO - оксид магния,

S - сера.

Для каждой конкретной плавки численные значения данных компонентов различны в зависимости от состава шихты и марки стали, которую необходимо получить.

Основность шлака - соотношение .

Сумма всех оксидов не менее 90%.

Хим. состав металла: например, сталь марки 35ГС (сталь содержит Г - марганец, С - кремний, причём содержание легирующих элементов не превышает 1,5%; сталь невысокого качества, так как нет указания на это (А)).

C (углерод) = 0,31 - 0,35; Si (кремний) = 0,60 - 0,70; Mn (марганец) = 1,00 - 1,15; P (фосфор) = 0,025 - не более; S (сера) = 0,025 - не более; Cr (хром) = 0,30 - не более; Ni (никель) = 0,30 - не более; Cu (медь) = 0,30 - не более; Nb (ниобий) - нет; Al (алюминий) - нет.

В зависимости от того сталь какой марки необходимо получить на конечном этапе плавки, содержание выше перечисленных элементов будет различным.

1.2. Регулирование показателей качества приведёт к снижению брака, поэтому нужно стремиться к их автоматическому регулированию этих показателей, хотя это не всегда достаточно просто осуществить, особенно в металлургии.

2. Характеристики материальных и энергетических потоков.

2.1. Номинальные значения расходов и диапазон изменений при различных режимах работы: сюда могут быть отнесены расход металлошихты, расход ферросплавов, расход электроэнергии, потребляемой ДСП в зависимости от времени плавки (время под током), расход охлаждающей воды на выходе из охладительной арматуры, расход кислорода в печь, расход аргона и рафинирующих металлов (используется на агрегате АКП - агрегат ковш - печь), расход природного газа и кислорода для предварительного подогрева (на заводе ПФ ТОО “Кастинг” подогрев металлошихты не осуществляется) и другое.

Природный газ и кислород для предварительного подогрева металлошихты нет необходимости оценивать. Так как металлошихту подают в печь без предварительного подогрева.

Параметры охлаждающей воды:

- кожух 142м3, пост. 17oC, выход 20oC;

- эркер 53м3, пост. 17oC. выход 22oC;

- свод 150м3, пост. 17oC, выход 19oC.

Количество израсходованной электроэнергии: примерно 12200 кВтч и более зависимости от времени работы печи под током (данные приведены в таблице 4).

Таблица 4 - Расход электроэнергии, потребляемой ДСП, в зависимости от времени металла под током

Расход электроэнергии

15048 кВтч

15548 кВтч

12279 кВтч

14562 кВтч

14491 кВтч

Время под током (минуты)

73'

77'

59'

69'

68'

Из расчёта примерно 750 кВтч на одну тонну материала.

Расход аргона и расход рафинирующих материалов: аргоном плавка продувается на АКП (агрегат ковш - печь), на печи аргона нет.

2.2 Номинальные и предельные значения физических параметров потоков, характер влияния этих потоков на качество продукции -

На качество продукции оказывают большое влияние давление и температура охлаждающей воды, давление газов в рабочем пространстве печи (примерно 50 - 500 Н/м2 (1мм водяного столба равен 9,81 Па; 1мм ртутного столба равен 133,3 Па), - возможные колебания 5 - 50 Па), расход, температура и хим. состав отходящих газов и др.

Поддержание данных параметров на определённом уровне плодотворно сказывается на работе печи. При нарушении регламента печь может перегреться, накопить большое количество газов в рабочем пространстве, что неминуемо приведёт к разрыву печи и останову производства. С газами из металла удаляется ненужный углерод (в виде CO). Правильное дозирование его удаления повышает качество продукции.

Сталеплавильные дуговые печи во время работы выделяют в атмосферу значительное количество запылённых газов. Применение кислорода и порошкообразных материалов ещё более способствует этому. Содержание пыли в газах электродуговой печи достигает 10 г/м3 и значительно превышает норму. Для улавливания пыли производится отсос газов из рабочего пространства печи мощным вентилятором. Для этого в своде печи делают отверстие с патрубком для газоотсоса. Патрубок через зазор, позволяющий наклонять или вращать печь, подходит к стационарному трубопроводу. По пути газы разбавляются воздухом, необходимым для дожигания CO. Затем газы охлаждаются водяными форсунками в теплообменнике и направляются в систему труб Вентури, в которых пыль задерживается в результате увлажнения. Применяют также тканевые фильтры, дезинтеграторы и электрофильтры. Используют системы газоочистки, включающие полностью весь электросталеплавильный цех, с установкой зонтов дымоотсоса под крышей цеха над электропечами. Из всего выше описанного следует, что нельзя оставлять без внимания контроль параметров отходящих газов и необходимо устанавливать газоочистные сооружения. На заводе “Кастинг” в ЭСПЦ-1 это не очень развито. Ни расход, ни температура, ни химический состав газов на заводе не контролируют (поэтому численное значение достаточно сложно определить). Но система автоматизации ДСП должна включать приборы по контролю и сигнализации данных параметров, поэтому они имеют место на функциональной схеме, приведённой в следующем пункте настоящей курсовой работы.

3. Характеристики агрегатов участка.

3.1. Состав оборудования:

В электрическое оборудование дуговой печи входят:

1) Воздушный разъединитель, предназначенный для отключения всей электропечной установки от линии высокого напряжения.

2) Главный автоматический переключатель (IV на функциональной схеме дуговой печи ), служащий для отключения под нагрузкой электрической цепи, по которой протекает ток высокого напряжения. При неплотной укладке шихты в печи в начале плавки, когда шихта ещё холодная, дуги горят неустойчиво, происходят обвалы шихт и возникают короткие замыкания между электродами. При этом сила тока резко возрастает. Это приводит к большим перегрузкам трансформатора, который может выйти из строя. Когда сила тока превысит установленный предел (12 - 24кА в зависимости от ёмкости печи), выключатель автоматически отключает установку, для чего имеется реле максимальной силы тока.

3) Печной трансформатор (II на функциональной схеме дуговой печи) необходим для преобразования высокого напряжения в низкое (с 6 - 10кВ до 100 - 800В). Обмотки высокого и низкого напряжения и магнитопроводы, на которых они помещены, располагаются в баке с маслом, служащим для охлаждения обмоток. Охлаждение создаётся принудительно перекачиванием масла из трансформаторного кожуха в бак теплообменника, в котором масло охлаждается водой. Трансформатор устанавливают рядом с электропечью в специальном помещении. Он имеет устройство, позволяющее переключать обмотки (III на функциональной схеме дуговой печи). Участок электрической цепи от трансформатора до электродов называют короткой сетью. Выходящие из стены трансформаторной подстанции фидеры при помощи гибких, водоохлаждаемых кабелей подают напряжение на электрододержатель. Длина гибкого участка должна позволять производить нужный наклон печи и отворачивать свод для загрузки. Гибкие кабели соединяют с медными водоохлаждаемыми шинами, устанавливаемыми на рукавах электрододержателей. Турбошины непосредственно присоединены к головке электрододержателя, зажимающей электрод.

Помимо указанных основных узлов электрической сети в неё входит различная измерительная аппаратура, подсоединяемая к линиям тока через трансформаторы тока или напряжения, а также приборы автоматического регулирования процесса плавки.

3.2 Аварийные режимы ДСП:

1) Неравномерная температура: вверху горячий металл, внизу - холодный.

2) Прогар футеровки.

3) Неисправности в работе электродов (например, поломка электродов).

4) Попадание воды в печь.

5) Прогар кожуха.

6) Нарушение системы водоохлаждения (свод, кожух, эркер, газоотсос).

Во всех случаях требуется отключить печь от питания. Если необходимо, провести наладочные работы (заменить неработоспособный электрод, заделать футеровку, наладить систему водоохлаждения) или создать необходимое перемешивание металла (для равномерного обеспечения температуры).

На основании проведённого анализа составляется задание на автоматизацию в виде таблицы (таблица 5).

Таблица 5 - Техническое задание на автоматизацию

Наименование технологического агрегата

Назначение

Наименование параметра

Величина параметра

Степень автоматизации

Точность поддержания (5% от заданного значения)

1

2

3

4

5

6

7

1

Печной трансформатор

Преобразо-вание высокого напряжения в низкое (с 6 - 10кВ до 100 - 800кВ)

1) Напряжение фазы

2) Ток фазы

3) Активная мощность фазы (P=I . U)

4) Количество израсходован-ной электроэнер-гии

280В

16 - 24кА (от 1 до 10кА)

5мВт

12200 - 15600

кВтч

- контроль,

- регистрация,

- автоматичес-кое регулирование

- контроль,

- регистрация,

- автоматичес-кое регулирование

- регистрация,

- автоматичес-кое регулирование

- регистрация,

- автоматичес-кое регулирование

±14В

±0,8 - 1,2кА

±250 кВт

±610 - 780 кВтч

2

Дуговая плавильная печь

Для выплавки стали

1) Положение электрода

2) Температура футеровки

3) Температура металла

4) Давление газов в рабочем пространстве печи

от 0 до 100% хода ИМ

1100 - 1900оС

1620 - 1640оС (от 1500 до 1750оС)

5 - 500 Па

- контроль,

- сигнализация

- контроль,

- регистрация,

- автоматичес-кое регулирование

- контроль,

- регистрация

- контроль,

- регистрация,

- автоматичес-кое регулирование

±5% хода ИМ

55 - 95оС

± 81 - 82оС

5 - 50 Па

Продолжение таблицы 5

1

2

3

4

5

6

7

3

Охладительная арматура

Для обеспечения правильного режима работы печи

1) Давление охлаждаю-

щей воды

2) Расход воды

3) Температура воды

4) Расход кислорода в печь

_____

372м3

на входе 17оС (постоянно) на выходе 19 - 22оС

за сутки 27987м3, за 1 час 1105м3

- регистрация,

- сигнализация

- регистрация,

- сигнализация

- регистрация,

- сигнализация

- контроль,

- регистрация,

- сигнализация

5% от заданного значения

5% от заданного значения по каждому элементу печи в отдельности

±1оС

За сутки ±45оС (от 1060м3 до 1750м3)

4

Газоотсос

Отвод газов из рабочего пространства печи

1) Расход

2) Темпера-тура

3) Химичес-кий состав

______

- контроль,

- регистрация

5% от заданного значения

Примечание. Параметры, для которых в таблице не указаны численные значения, не замеряются на заводе ПФ ТОО “Кастинг” в настоящее время в ЭСПЦ-1, но для лучшего качества ведения технологического процесса их необходимо контролировать.

7 Построение математической модели

Регулирование электрического режима дуговых печей и соответствующая техника достигли высокого уровня развития. В существенно меньшей степени осуществлена автоматизация теплового и технологического режимов плавки. Поэтому выберем в качестве САР систему регулирования давления газов в рабочем пространстве печи, а давление газов - в качестве регулирующего параметра.

Регулирование давления в нашей схеме осуществляется за счёт выдвижения - задвижения шибера, установленного на газоотсосе, как было описано выше.

Давление газов в печи с течением процесса постоянно увеличивается. Максимально допустимое значение - примерно около 500 - 600Па. Может наступить такой момент, когда давление будет настолько высоким, что может привести к нарушению хода технологического процесса или разрыву печи. Поэтому его (давление) можно отнести к основным параметрам печи, подлежащим автоматическому контролю и регулированию, и данная система автоматического регулирования заслуживает внимания наравне с системой автоматического регулирования параметров электрического режима.

Расчёт автоматических систем регулирования основывается на статических и динамических характеристиках объекта управления. Эти характеристики находятся по справочным таблицам или определяются экспериментально.

Статической характеристикой ОУ (объект управления) называется зависимость регулируемой (управляемой) - выходной величины объекта управления от входной величины y в установившемся состоянии. Входной величиной является положение регулирующего органа (регулирующий орган включён в объект) или величина, характеризующая нагрузку ОУ, то есть расход энергии, топлива, воды, пара (регулирующий орган не включён в ОУ).

Многие металлургические ОУ, являясь по существу объектами с распределёнными параметрами, могут при определённых условиях быть представлены в виде ОУ с сосредоточенными параметрами. Временными динамическими характеристиками таких ОУ называют изменение выходной величины во времени при некоторых типовых изменениях входной величины ОУ. В качестве типовых входных воздействий рассматривают ступенчатую и импульсную функцию. Для металлургических ОУ наиболее распространённой и легко получаемой динамической характеристикой можно считать кривую разгона, т.е. изменение во времени выходной величины x(t) после ступенчатого изменения входной величины на ?y.

Входной величиной в нашей САР давления газов является положение регулирующего шибера, % хода ИМ (исполнительного механизма). Выходной величиной является величина давления.

Из справочников динамических характеристик похожих ОУ (мартеновская печь, методическая печь, доменное производство) за неимением возможности проведения опытов на самом ОУ (на заводе ПФ ТОО “Кастинг” данный параметр - давление - вообще не измеряется) строим кривую разгона - динамическую характеристику дуговой сталеплавильной печи (изменение величины давления во времени в зависимости от изменения положения шибера).

Положение шибера (входная величина) изменяется скачкообразно (ступенчато) (рисунок 5):

Рисунок 5 - Ступенчатое изменение входной величины.

В результате давление в печи (выходная величина) отвечает на изменение положения шибера следующим образом (рисунок 6):

68

Рисунок 6 - Кривая разгона объекта управления.

Если шибер закрывается, то давление в рабочем пространстве печи начинает стремительно расти, и в определённый момент времени (?7 - 8с) оно достигнет максимального значения (50Па). При этом необходимо будет вновь открыть шибер, чтобы разрядить печную атмосферу и понизить давление в печи.

По приведённой кривой разгона можно сделать вывод, что рассматриваемый нами объект управления является объектом с самовыравниванием, так как описывается апериодическим (инерционным) звеном первого порядка, и статическим объектом.

Объекты управления могут быть одноемкостными и многоемкостными. Одноемкостные объекты описываются одним типовым звеном, многоемкостные -- несколькими типовыми звеньями, включенными по последовательной, па-раллельной или смешанной схеме. В нашем случае объект многоемкостной, так как описывается двумя типовыми звеньями (апериодиодическое звено и звено транспортного запаздывания), а именно

, (4)

для простейшего статического объекта с запаздыванием, где - постоянная времени объекта, - время запаздывания.

Передаточная функция апериодического (инерционного) звена первого порядка

(5)

Передаточная функция звена транспортного запаздывания

(6)

По кривой разгона определяем следующие параметры, характеризующие динамические свойства объекта:

1) запаздывание - если в точке максимальной скорости изменения выходной величины провести касательную к кривой разгона и продолжить её до пересечения с линией начального установившегося значения выходной величины, то отрезок времени от момента внесения возмущения до точки пересечения касательной с осью абссцис определит общее запаздывание объекта управления ф.

2) постоянная времени - отрезок времени от момента пересечения касательной с линией начального установившегося значения до момента её пересечения с линией нового установившегося значения называется постоянной времени объекта Т.

3) коэффициент передачи - для статического объекта представляет собой изменение выходной величины объекта при переходе из начального в новое установившееся состояние, отнесённое к единичному возмущению на входе

(7)

Строим касательную к кривой разгона (рисунок 6), и определяем по графику основные параметры, описывающие динамические свойства объекта, на основе выше изложенного

; ; (8)

Следовательно, передаточная функция объекта управления имеет вид

8 Синтез системы автоматического регулирования

В задачи синтеза автоматических систем регулирования входят выбор закона регулирования и определение параметров настройки регулятора, обеспечивающих заданное или оптимальное качество переходных процессов.

Оптимальными параметрами настройки замкнутой системы автома-тического регулирования называются значения коэффициента усиле-ния регулятора кр и времени изодрома Ти, при которых переходный процесс соответствует одному из следующих критериев: степень зату-хания равна ш= 0,9 или 0,75; площадь под кривой переходного про-цесса минимальна.

Для определения оптимальных значений настройки регуляторов необходимо знать для объектов с самовыравниванием коэффициент усиления объекта коб и постоянную времени объекта Тоб. Эти параметры были определены в пункте 6 данной курсовой работы: ; .

На первом этапе настройки системы регулирования определяют желаемый вид переходного процесса. Наиболее общим критерием оптимальности является критерий минимума динамической ошибки. Когда для технологического процесса важна стабилизация процесса за заданное время, в качестве критерия выбирают степень затухания переходного процесса (переходной процесс с 20% перерегулированием). Если же необходимо исключить влияние регулирующего воздействия данной системы на другие переменные объекты, то выбирают апериодический переходной процесс, без перерегулирования.

Нам важно стабилизировать процесс за определённое заданное время (чтобы величина давления не превышала предельно допустимые значения), следовательно, выбираем процесс с 20% перерегулированием.

Одна из основных характеристик процесса регулирования - точность, оцениваемая значением статической ошибки, то есть остаточным отклонением регулируемой величины от заданного значения по окончанию переходного процесса. В реальных системах статическая ошибка не должна выходить за пределы, допускаемые технологией автоматизируемого процесса.

В практике автоматизации наибольшее распространение получили апериодические процессы и процессы с 20% перерегулированием.

Апериодические процессы применяются в тех случаях, когда не допускается перерегулирование, требуется минимальное время регулирования, а динамическое отклонение регулируемой величины от установившегося (заданного) значения может быть довольно большим.

Для нашего случая (регулирование давления в рабочем пространстве печи) время регулирования неважно (будет ли оно стремиться к минимуму или нет), а вот динамическую ошибку необходимо учитывать (необходимо стремиться к её уменьшению). Поэтому останавливаем свой выбор на переходном процессе с 20% перерегулированием.

На втором этапе определяют закон регулирования. Тип регулятора и закон управления (регулирования) выбирают в зависимости от технологических показателей, свойств ОУ, а также требований к качеству регулирования.

Свойства объекта управления в первом приближении могут быть оценены по отношению времени запаздывания ф к постоянной времени объекта Тоб: фоб.

Чем это отношение больше, тем задача автоматизации сложнее, и поэтому обычно:

при фоб < 0,2 выбирают позиционный регулятор;

при 0,2 ? фоб ? 1 выбирают регулятор непрерывного действия;

при фоб > 1 выбирают импульсный или цифровой регулятор.

Однако позиционные системы регулирования характеризуются автоколебаниями регулируемой величины, и если технология автоматизируемого процесса не допускает автоколебательного режима, то возможно применение регулятора непрерывного действия (например Р - 17).

Определим в нашем случае отношение ф к Тоб

(9)

Следовательно, для осуществления регулирования выбираем регулятор непрерывного действия и у нас в системе не будет автоколебательного режима, которым характеризуется позиционный регулятор.

По графикам, приведённым на рисунке 7, выбираем простейший регулятор (закон управления) для процесса с 20% перерегулированием (график б). Простейший закон регулирования обеспечивает П - регулятор (пропорциональный регулятор). Проверяем по графикам, приведённым на рисунке 8, для статических объектов управления, обеспечит ли выбранный регулятор допустимое время регулирования tp; если не обеспечивает, то необходимо выбрать более сложный закон управления.

Рисунок 7 - Динамические коэффициенты регулирования на статических объектах при процессах а - апериодическом, б - с 20% перерегулированием, в - с min; 1 - И - регулятор, 2 - П - регулятор, 3 - ПИ - регулятор, 4 - ПИД - регулятор.

Из рисунка 8 видно, что время регулирования при использовании П - регулятора в рассматриваемой системе составит ? 6с. Это не совсем нас устроит, так как необходимо, по крайней мере, 8с для осуществления процесса регулирования (рисунок 6).

Статическую ошибку, если выбран П - регулятор, находят по рисунку 9, и если она больше допустимой , то вместо П - регулятора выбирают ПИ - регулятор.

. Следовательно,

, (10)

где хст - статическая ошибка регулирования, - допустимая ошибка регулирования, равная 500Па (давление газов в печи колеблется в пределах от 50Па до 500Па).

Так как статическая ошибка регулирование меньше допустимой ошибки, то можно использовать П - регулятор, но для продления времени регулирования (до 8 - 10с) необходимо в системе использовать ПИ - закон регулирования и, следовательно, ПИ - регулятор (пропорционально - интегральный регулятор). Время регулирования в этом случае составит ? 12с (рисунок 8).

Динамические свойства типовых многоемкостных объектов могут быть аппроксими-рованы свойствами последовательно включенного интегрирующего звена и звена транспортного запаздывания. Поскольку АФЧХ (амплитудно - фазовая частотная характеристика) звена транспортного запаздывания проходит через все квадранты, то неогра-ниченное увеличение коэффициента усиления регулятора всегда при-водит к неустойчивым переходным процессам.

Оптимальные настройки для различных видов переходного процесса определяют по таблице 6.

Таблица 6 - Формулы для определения настроек регулятора

Тип

регуля-тора

Вид объекта

Вид переходного процесса

апериодический

ш=1

С 20% перерегулированим ш=0,75

С минимальной динамической ошибкой

П

с самовыравни-ванием

ПИ

с самовыравни-ванием

Ти=0,6 Тоб

Ти=0,7 Тоб

Ти= Тоб

ПИД

с самовыравни-ванием

Ти=2,4 Тоб

Тд=0,4 Тоб

Ти=2 Тоб

Тд=0,4 Тоб

Ти=1,3 Тоб

Тд=0,5 Тоб

П

без самовыравни-вания

-

ПИ

без самовыравни-вания

Ти=0,6 фоб

Ти=3 фоб

Ти=4 фоб

ПИД

без самовыравни-вания

Ти=5 фоб

Тд=0,2 фоб

Ти=2 фоб

Тд=0,4 фоб

Ти=1,6 фоб

Тд=0,5 фоб

Определяем настройки регулятора

(11)

где - коэффициент передачи, % хода регулирующего органа / ед. регулируемой величины; Ти - время изодрома, с.

9 Исследование устойчивости

При некоторых условиях система автоматического регулирования вместо обеспечения стабилизации технологических параметров и компенсации возмущений может начать их усиливать, тогда переходный процесс становится расходящимся, неустойчивым. Критерием устойчивости являются условия, при которых данная система может быть устойчивой.

Замкнутая система автоматического регулирования будет находиться на границе устойчивости, если в разомкнутой системе сдвиг по фазе составляет 180° и отношение амплитуд равно единице. При сдвиге фаз ц(щ) = 180° и амплитуде выходных колебаний А (щ)> 1 система неустойчива; А (щ) < 1 -- устойчива.

Амплитуда выходных колебаний может меняться в широких пределах путем изменения параметров настройки регулятора, т. е. из-менения кр и Тр. С изменением нагрузки технологического аппарата коэффициент усиления объекта будет существенно меняться, и устойчивая система при некоторых нагрузках может выйти за пре-делы устойчивости. Поэтому настройки регулятора выбирают с таким расчетом, чтобы был гарантирован запас устойчивости системы на всех технологических режимах.

Для определения устойчивости нашей системы в программе Mat Lab построим график переходного процесса и амплитудно - фазовую частотную характеристику (АФЧХ) разомкнутой системы.

Объект регулирования у нас представлен совокупностью апериодического (инерционного) звена первого порядка и звена запаздывания. Регулятор, реализующий ПИ - закон, - совокупностью пропорционального и интегрального звеньев. Передаточная функция ПИ - регулятора имеет вид

, (12)

где - коэффициент передачи, % хода регулирующего органа / ед. регулируемой величины; Ти - время изодрома, с.

Рисунок 10 - Структурная схема разомкнутой АСР (автоматической системы регулирования).

Рисунок 11 - График переходного процесса.

Если после окончания переходного процесса система снова приходит в первоначальное или другое равновесное состояние, то такую систему называют устойчивой.

Если при тех же условиях в системе или возникают колебания со всё возрастающей амплитудой, или происходит монотонное увеличение отклонения регулируемой величины от её заданного равновесного значения, то систему называют неустойчивой.

По графику переходного процесса (рисунок 11) видно, что наша АСР устойчива, с течением определённого времени в системе устанавливается равновесное состояние.

Проверим устойчивость нашей АСР по критерию устойчивости Найквиста.

Амплитуда выходных колебаний может меняться в широких пределах путем изменения параметров настройки регулятора, т. е. из-менения кр и Тр. С изменением нагрузки технологического аппарата коэффициент усиления объекта будет существенно меняться, и устойчивая система при некоторых нагрузках может выйти за пре-делы устойчивости. Поэтому настройки регулятора выбирают с таким расчетом, чтобы был гарантирован запас устойчивости системы на всех технологических режимах.

Критерий устойчивости Найквиста -- Михайлова имеет следующую формулировку: если амплитудно-фазовая частотная характеристика разомкнутой системы не охватывает точки с координатами --1;j0, то после замыкания этой системы отрицательной обратной связью она будет устойчива.

Критерий Найквиста - Михайлова позволяет судить об устойчи-вости САР еще до ее замыкания на объект (по экспериментальным частотным характеристикам).

Рисунок 12 - Комплексная частотная характеристика разомкнутой системы АСР.

Если разомкнутая система устойчива, то для обеспечения её устойчивости в замкнутом состоянии необходимо и достаточно, чтобы КЧХ (комплексная частотная характеристика) разомкнутой системы не охватывала точку (- 1 , j0).

Если КЧХ устойчивой разомкнутой системы охватывает точку (- 1, j0), то система в замкнутом состоянии не устойчива.

Из рисунка 12 видно, что наша система автоматического регулирования давления газов в рабочем пространстве печи устойчива в замкнутом состоянии (при охвате отрицательной обратной связью - рисунок 13), так как в разомкнутом состоянии не охватывает точку (- 1, j0).

Рисунок 13 - Структурная схема замкнутой АСР (автоматической системы регулирования).

Запас устойчивости - это количественная оценка того, насколько значения параметров системы или ее характеристики отстоят от границы, опасной с точки зрения устойчивости. Различают запас устойчивости по амплитуде и по фазе.

Запас устойчивости по амплитуде показывает насколько необходимо изменить модуль К(щ) АФХ разомкнутой системы при частоте среза щср, чтобы замкнутая система оказалась на границе устойчивости. За частоту среза разомкнутой системы принимают такую, при которой выполняется равенство: К(щ) =|W(jщ) |= 1 .

Отсюда следует, что при частоте среза характеристика W(jщ) пересекает окружность единичного радиуса с центром в начале координат. Если здесь частоту, соответствующую пересечению характеристики W(jщ) с вещественной отрицательной полуосью, обозначить за щ1, то запас устойчивости по амплитуде будет определяться расстоянием от точки этого пересечения до точки с координатами ( - 1 ,j0).

Запас устойчивости по фазе ш показывает насколько необходимо увеличить фазу в разомкнутой системе при частоте среза, чтобы соответствующая ей замкнутая система оказалась на границе устойчивости. Запас устойчивости по фазе определяется углом между вектором W(jщср) и вещественной отрицательной полуосью. Обычно при определении необходимого запаса устойчивости вокруг опасной точки вычерчивается область, куда не должна заходить АФХ.

Рисунок 14 Определение запаса устойчивости по модулю и по фазе с помощью ЛАЧХ (логарифмических амплитудно - частотных характеристик) разомкнутой системы АСР.

На рисунке 14 показаны логарифмические частотные характеристики, соответствующие КЧХ (рисунок 12) для устойчивой системы в разомкнутом и замкнутом состояниях. Частота, при которой ЛАЧХ пресекает ось абсцисс, называется частотой среза и обозначается щс.

В нашем случае частота среза равна щс=0,54 (рисунок 14).

Запасы устойчивости по модулю и по фазе определяем по ЛАЧХ и ЛФЧХ разомкнутой устойчивой системы автоматического регулирования (рисунок 14). Если при частоте щ1>щc ЛФЧХ ц(щ1)= - р, то абсолютная величина отрицательной амплитуды ЛАЧХ при этой частоте определяет запас устойчивости по модулю Lc в децибелах, а запас устойчивости по фазе равен значению ЛФЧХ на частоте среза г (щс)+р. Если щс>щ1, то система неустойчива.

У нас щc<щ1, следовательно, система устойчива. Запас устойчивости по модулю равен Lc=54,4дБ. Запас устойчивости по фазе равен

г= -140,10+1800=39,90.

Таким образом, запас устойчивости по модулю представляет собой запас по коэффициенту передачи к разомкнутой системы относительно его критического по устойчивости значения.

Запас устойчивости по фазе г показывает, насколько возрастёт запаздывание по фазе в системе на частоте среза щс при неизменном коэффициенте усиления на этой частоте, чтобы система оказалась на границе устойчивости.

10 Исследование переходного процесса

Обеспечение устойчивости САР является необходимым, но недостаточным условием настройки системы авторегулирования. В зависимости от выбранных параметров настройки вид переходных процессов замкнутых систем авторегулирования существенно меняется. Основными показателями качества регулирования являются:

время регулирования tр;

величина перерегулирования у;

колебательность процесса;

наличие статической ошибки д;

запас устойчивости.

График переходного процесса (полученный с помощью Mat Lab) был представлен в предыдущем пункте 9. График выглядит следующим образом:

Рисунок 15 - Переходная функция системы с перерегулированием.

Рассмотрим основные показатели качества регулирования относительно нашей системы автоматического регулирования давления газов (по рисунку 15).

Время регулирования tp характеризует быстродействие системы и соответствует периоду, по истечении которого управляемая величина входит в зону нечувствительности регулятора.

По графику, представленному на рисунке 14, определяем, что время регулирования составляет 40 с (Setting time).

Перерегулированием у называется максимальное отклонение управляемой величины от заданного значения, выраженное в процентах (оно должно составлять 20 - 30%)

(13)

Перерегулирование появляется потому, что система к новому установившемуся состоянию подходит с определенной скоростью, определяемой тангенсом угла наклона касательной в точке максимальной скорости изменения выходной величины. Чем больше скорость, тем больше будет перерегулирование, и для его снижения необходимо снижать скорость нарастания управляемой величины. Но снижение скорости приведет к увеличению времени регулирования, что нежелательно.

Перерегулирование в нашем случае из рисунка 15 равно 45,7% (Overshoot).

(14)

Вообще величина перерегулирования лежит в пределах 20% от требуемого значения регулируемой величины. В противном случае перерегулирование может привести к нарушению хода технологического процесса (в нашем случае избыточное давление может привести к взрыву печи). Система регулирования давления построена таким образом, что, как только давление газов в печи становится больше 50, открывается шибер, приводимый в действие регулятором, газы выходят через газоотсос, и давление в печи понижается. Это способствует нормальному ведению технологического процесса. Однако величина давления в печи стабилизируется не сразу, а по истечению определённого времени регулирования, то есть 40 с. В это время давление может превысить 50Па на 46% (перерегулирование), то есть на 23 Па. На работу печи это существенного влияния не окажет, так как точность поддержания нашей регулируемой величины составляет 5-50Па (таблица 6). Качество регулирования считается удовлетворительным, если перерегулирование не превышает 30 - 40%, а хорошим, если не превышает 20%.

В качестве оптимального переходного процесса регулирования на основе произведённого расчёта величины перерегулирования рекомендую переходной процесс с минимальной квадратичной площадью регулирования, характеризующийся наибольшим перерегулированием (приблизительно 40 - 45
%) и временем регулирования, наибольшим регулирующим воздействием.

Колебательность процесса характеризуется числом колебаний управляемой величины за время регулирования. Количественно колебательность оценивается по логарифмическому декременту затухания, который представляет собой натуральный логарифм отношения двух последующих амплитуд отклонений управляемой величины одного направления

(15)

Чем больше логарифмический декремент затухания, тем быстрее происходит затухание переходного процесса. У нас переходной процесс затухает примерно через 39 - 40с. Это не очень быстро, поэтому величина колебательности ближе к нулю, чем к единице.

Степень колебательности используется для оценки качества системы. Практически колебательность удобно характеризовать числом периодов переходного процесса за время регулирования. Процессы, у которых колебательность составляет 1 - 2 периода, называются слабоколебательными. Обычно в системе допустимо иметь 2 - 3 периода колебаний в переходном процессе. При числе периодов больше трёх система требует коррекции. В нашем случае 2 периода колебания, следовательно, система не требует коррекции.

Установившаяся ошибка показывает точность управления в установившемся режиме. Она равна разности между заданным значением управляемой величины и ее установившимся значением при номинальной нагрузке.

Обычно принимают, что по истечении времени регулирования отклонение регулируемой величины от установившегося значения должно быть не более е=5%.

Степень затухания, измеряемая в процентах, служит количественной оценкой интенсивности затухания переходного процесса и определяется как отношение разности первой и третьей амплитуды к первой амплитуде переходного процесса

(16)

Интенсивность затухания колебаний в системе считается удовлетворительной, если степень затухания составляет 75% и выше. В некоторых случаях допускается около 60%.

С изменением параметров настройки регулятора степень затуха-ния переходного процесса может меняться от 0 до 1. Она равна 0, когда система находится на границе устойчивости, и равна 1 для апериодических переходных процессов.

11 Выбор аппаратов и составление спецификации

Выбор аппаратуры с точки зрения рода энергии определяется спецификой технологического процесса, условиями пожаро - и взрывоопасности установки, агрессивности окружающей среды, требованиями к быстродействию, дальностью передачи информации.

Электрические приборы получили наиболее широкое распространение.

Для пожаро - и взрывоопасных условий применяют пневматические и гидравлические средства. Основные преимущества таких систем: большой коэффициент усиления по мощности; высо-кое быстродействие; малые габариты и металлоемкость на 1 кВт вы-ходной мощности. Недостаток их применения - необходимость использования специализированных источников питания (гидравлических насосов, компрессоров). Кроме того, гидросистемы требуют более тщательной герметизации линий связи и нуждаются в специальных емкостях для хранения рабочей среды (воды либо спе-циального негорючего масла).

Чем выше класс точности аппаратуры, тем более сложной и дорогой является конструкция. Поэтому целесообразно выбирать аппаратуру с тем классом точности, который определяется действительными требованиями установки.

Следует стремиться к применению однотипных средств автоматизации, что дает преимущества как с точки зрения обслуживания и обеспечения запасными частями.

Заказные спецификации приборов и средств автоматизации содержат перечни измерительных преобразователей, приборов, регуляторов и пр. В спецификации указывают наименование устройства, его тип и количество аппаратов, приводят техническую характеристику. В графе “позиция” указывается номер позиции прибора на схеме автоматизации.

Для нашей АСР давления газов в рабочем пространстве печи выберем аппаратуру с учётом соблюдения условий технологического процесса и составим спецификацию (приведена в графической части).

При выборе аппаратуры контроля и сигнализации необходимо учитывать параметры контролируемой и окружающей среды - температуру, давление, состав, влажность, запылённость, электрические свойства, а также условия измерения - размеры и характер контролируемого объекта, расстояние между точкой измерения и вторичным прибором, механические воздействия (удары, вибрацию), наличие источников питания. Должны быть выдержаны требования противопожарной техники и охраны труда и требования, предъявляемые технологическим процессом к погрешности, чувствительности и инерционности аппаратуры. Если имеется возможность, то следует применять унифицированную аппаратуру: приборы и регуляторы одной информационной системы, одного завода - изготовителя и т. д. Это облегчит обслуживание системы управления и позволит сократить число резервных приборов, регуляторов и сигнализаторов.

При выборе аппаратуры для горячих и в то же время открытых цехов металлургического производства предпочтение следует отдавать приборам с температурной компенсацией

Заключение

В ходе выполнения курсового проекта были изучены: принцип работы дуговой сталеплавильной печи ДСП-25Н5, используемой на предприятии ПФ ТОО «Кастинг», параметры, регулирование которых можно автоматизировать, сложности регулирования этих параметров. Мы рассмотрели пример автоматизации регулирования давления в рабочем пространстве, составили задание на автоматизацию, выбрали закон регулирования (ПИ - закон), изучили график переходного процесса, проверили систему на устойчивость. Согласно специфики технологического процесса и требованиям пожаро- и взрывобезопасности была выбрана аппаратура системы регулирования и составлена спецификация.

В настоящее время происходит широкое внедрение САУ в производство. На заводах и предприятиях производство которых связанно с опасностью для жизни и здоровья рабочих, например нефтехимическое производство, САУ особенно необходимы, так как они позволяют управлять процессом без непосредственного участия рабочих.

ДСП-25Н5 то же является опасным объектом, так как температура плавления очень высока и долго находится в сталеплавильном цеху очень трудно. Поэтому автоматизировав её мы избежим длительного нахождения в цеху.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Автоматизация типовых технологических процессов и установок: Учебник для вузов / А.М.Корытин, Н.К.Петров, С.Н.Радимов, Н.К.Шапарев. - М.: Энергоатомиздат, 1988. - 432с.

2. Автоматизация типовых технологических процессов и установок. Учебное пособие для вузов. / А.М.Корытин, Н.К.Петров, С.Н.Радимов, Н.К.Шапарев. Киев - Одесса: Высшая школа, 1980. - 372с.

3. Государственная система промышленных приборов и средств автоматизации. Методическое пособие для инженерно-технических работников. / Под общей редакцией Г.И.Ковалерова. Каталог, ЦНИИТЭИ приборостроения, 1981.

4. Курсовое и дипломное проектирование при автоматизации производственных процессов./ Под ред. И.К. Петрова 1986.

5. Справочник. Автоматизация и средства контроля производственных процессов./ Под ред. Карибского

6. Клюев А.С., Глазов Б.В. Дубровский А.Х. Проектирование систем автоматизации ТП

7. Клюев А.С., Глазов Б.В. Приборы и средства автоматизации ТП

8. Кузнецов М.М., Волчкевич Л.И., Замчанов Ю.П. Автоматизация промышленных процессов: Учебник для вузов / Под ред. Г.А.Шаумяна. М.: Высшая школа, 1978. - 431с.

9. Шапарев Н.К. Автоматизация типовых технологических процессов металлообработки. Расчет и проектирование. Киев-Одесса: Высшая школа, 1984,- 312с.

10. Мельников В.А., Вальков В.М., Омельченко И.С. Автоматизированные и автоматические системы управления техническими процессами. - М.: Машиностроение, 1978. - 232с.

11. Горшков Б.И. Автоматическое управление. - М.:ИРПО: Издательский центр “Академия”, 2003. - 304с.

12. Глинков Г.М. Проектирование систем контроля и автоматического регулирования металлургических процессов. М.: Металлургия, 1986. - 352с.

13. Клюев А.С. Автоматическое регулирование. М.: Высшая школа, 1986. - 351с.

14. Дембовский В.В. Автоматизация литейных процессов. Л.: Машиностроение. Ленингр. отделение, 1989.- 264с.

15. Шипетин Л.И. Техника проектирования систем автоматизации технологических процессов. М.: Машиностроение, 1976. - 496с.

16. Иванов В.Н. Словарь - справочник по литейному производству. М.:Машиностроение, 1990. - 384с.

17. Болотов А.В., Шепель Г.А. Электротехнологические установки. Алматы: Мектеп, 1982. - 272с.

18. Свенчанский А.Д. Электротехнологические промышленные установки. М.: Энергоиздат, 1982. - 400с.

19. Ененко Г.М., Степанов Е.М., Филимонов Ю.П. Промышленные печи. М.: Машиностроение,1964. - 360с.

20. Никифоров В.М. Технология металлов и конструкционные материалы. Л.: Машиностроение. Ленингр. отделение, 1987.- 363с.

21. Технология конструкционных материалов: Учебник для вузов / А.М.Дальский, И.А.Арутюнова, Т.М.Барсукова, Л.Н.Бухаркин и др. - М.: Машиностроение, 1977. - 664с.

22. Ярошенко Ю.Г. Тепловая работа и автоматизация печей. М.: Металлургия, 1984. - 208с.

Страницы: 1, 2


© 2010 Рефераты