|
Силовые преобразовательные устройства
Силовые преобразовательные устройства
Контрольная работаСиловые преобразовательные устройстваЗАДАНИЕ 1Рассчитать и выбрать вентили в схеме регулирования напряжения нагревателей электропечи. Напряжение сети Uф=220В, потребляемый ток Iн. В режиме разогрева номинальный ток потребляется при половине напряжения на нагревателях. Схема преобразователя приведена на рисунке.Вентили выбрать для номинального режима и проверить по потере мощности, по нагреву. Данные к заданию №1 приведены в таблице 1.Таблица 1|
Мощность нагрев. установки, Рн, кВт | Напряжение нагрев. установки, Uф, В | | 25 | 127 | | | Определяем ток нагрузки: Средний ток фазы : Средний ток вентиля Максимальное напряжение, приложенное к вентилю равно амплитуде линейного: ?????????? ??? ???????? ??? ???????????? ??????????: Выбираем вентиль: Т10-50. предельный ток - IПР = 50 А , повторяющееся напряжение UП = 400-1000 В, прямое падение напряжения UПР = 1,76 В, тепловое сопротивление Rt - 0,9 0C/Вт. Ток через вентиль в течении первой полуволны Потери мощности в вентиле Температура структуры вентиля Температура расчетная 70о С не выше допустимой. Кремниевые теристоры могут работать при температуре 120 - 140ОС. ЗАДАНИЕ 2 Рассчитать индуктивность дросселя, установленного в цепи преобразователя электродвигателя при некотором значении минимального тока - Imin, действующем значении напряжения - Uп. Питание цепей выполняется от сети с частотой 50 Гц через трансформатор. Число фаз выпрямителя m=3. Постоянный коэффициент С =0,1-0,25 для компенсированных машин, С= 0,5-0,6 для некомпенсированных машин. Данные к расчету в таблицах. |
№ Вар | Номинальная скорость NНОМ, Об/мин | Мощность, РНОМ. кВт | Номинальный ток, IНОМ, А | Сопротивление якоря RЯ,Ом | Сопротивление обмотки возбуж дения rВ, Ом | Ток обмотки возбуждения IВ, А | Номинальное напряжение, В | | 5 | 600 | 23 | 120 | 0,845 | 62 | 2,55 | 400 | | |
|
Мощность тр-ра, SНТ, кВА | Напряжение сетевой обмотки,В | Напряжение вентильной обмотки, В | Напряжение корот кого замыкания тр-ра, UК% | | 29,1 | 500 | 410 | 5,2 | | | Полная индуктивность якорной цепиГнгде В - напряжение пульсацийm=6, =314 с-1 Индуктивность якоря ГнС=0,1-0,25 для компенсированных машинС=0,5-0,6 для некомпенсированных машинр-число пар полюсовn - cкорость, об/минРасчетная индуктивность трансформатора, приведенная к цепи постоянного токагде а=1 для нулевых схема=2 для мостовых схемХтр- индуктивное сопротивление фазы трансформатораИндуктивность дросселя ГнЗАДАНИЕ 3 Построить регулировочную и внешнюю характеристики преобразователя. Напряжение короткого замыкания сетевого трансформатора UK%, преобразователь - тиристорный постоянного тока. Граничный угол регулирования - - зависит от схемы выпрямления. Данные для расчета в таблице. |
Напряжение короткого замыкания тр-ра UK% | Cхема выпрямления | | 6,5 | Трехфазная нулевая | | |
Где А- коэффициент наклона внешней характеристики А=0,5 для трехфазных схем А=0,35 для однофазных схем UК% - напряжение короткого замыкания, UК%=8 для трансформаторов типа ТСЗП и ТСЗ Преобразователь работает на индуктивную нагрузку и непрерывный ток в области 0 60. Для построения характеристики задаваться значениями =0 600, для удобства построения расчеты в таблицу. Рассчитываем данные, согласно заданного варианта. Для =0 , =0 Для =0 , =0,5Для =0 , =1,0Аналогично находим данные для =300 и 600 ,при =0; 0,5; 1,0.Результат вычисления заносим в таблицу.|
| | | | | 0 | 1 | 0,9 | 0,5 | | 0,5 | 0,98 | 0,88 | 0,48 | | 1,0 | 0,97 | 0,87 | 0,47 | | | Строим по найденным данным внешнюю характеристику.Регулировочная характеристика:Где р - число пульсаций за период Т = /m = /1 = p=2·m=2·3 = 6, для простых симметричных схем, m-число фаз выпрямителя - граничный угол регулирования , индуктивность цепи принимаем. Для построения характеристики заполняем таблицу , задаваясь значениями 0.|
0 | 0 | 20 | 30 | 40 | 60 | 80 | 90 | 100 | 120 | | | 1 | 1,09 | 1,1 | 1,4 | 1,9 | 1,4 | 1,2 | 0,8 | 0,3 | | | Строим по найденным данным регулировочную характеристику.ЗАДАНИЕ 4Рассчитать потери мощности заданного преобразователя Данные: ТСП-63/0,7 УХЛ Вентильная Преобразователь: Uс = 660В, обмотка: Диод кремнеевый-2шт Sн.т = 58кВА, U = 205В U = 230В Рх х = 330Вт, I = 164А I = 200А Рк.з = 1900Вт Uк% = 5,5 Iх.х% = 6 Мощность потерь выпрямителя: Рd = Рв + Рт + Рф + Рв.с Потери в вентиле при протекании прямого тока: Рв = nв*Uпр*Iв.ср = 2*0,5*0,039 =0,039Вт nв =2, кол-во вентилей, по которым одновременно протекает ток в плече моста Uпр = (0-1,2В) - падение напряжения Iв.ср. = Iср/2 = 0,039; Iср = Iнагр/1,11=0,088/1,11 = 0,079А Потери в трансформаторе: Потери в электрических фильтрах: Рф = I2d*rдр=2002*1,2=48Вт rдр=U/I=230/200=1,2Ом Рвс = (0,5-1,5) Рd = 0,5*46=23Вт Рd = 0,039+ +48+23 = Вт ЗАДАНИЕ 5Рассчитать и выбрать тиристоры в цепи якоря двигателя постоянного тока независимого возбуждения. Выбрать трансформатор для преобразователя в цепи двигателя. Uн = 220В. Напряжение выпрямителяUdo = 1,15*U? = 1,15*220 = 253? ? ????? ???????????? ????????? ???????, ??????????? ????????????? ?????????????? ? ????? ?????. Iупор. = 1,8*Iн = 1,8*120 = 216А Принимаем ток нагрузки: Id = Iупор = 216А Средний ток вентиля: Iв.ср = Id/3 = 216/3 = 72А Максимальное обратное напряжение: Uобр.макс = 1,045*Udo = 1,045*253 = 264,4В Прямое максимальное напряжение: Uпрям.макс. = 6*U2ф * sin = 6*220*1 = 538,9В Выбираю вентиль: ТЛ-200; Iпр = 250А; Uп = 400-1000В; Uпр = 0,85; Rt = 0,180С/Вт. Выбранный вентиль проверяем: Iв = 0,577*Id = 0,577*250 = 144,3А Потери мощности в тиристоре: Рв = Iв*Uпр = 144,3*0,85=122,6Вт Температура структуры вентиля: в = Рв* Rt +окр = 122,6*0,18+25 = 470С<1250С, Выбранный вентиль проходит по условиям проверки Трансформатор выбираем по типовой мощности и вторичному напряжению. Sт = 1,05*Рd = 1,05*253*216 = 57,38кВА U2ф= 0,427*Udo = 0,427*253 = 108В I2ф = 0,817*Id = 0,817*216 = 176,5А Кт = U1ф/U2ф = 253/108,03 = 2,3 Ток первичной обмотки трансформатора: I1 = 0,817*(Id/Кт) = 0,817*(216/2,3) = 75,4А Выбираю трансформатор: ТСЗР-63/0,5-68 ЗАДАНИЕ 6Инверторный режим нереверсивного преобразователя, статические характеристики, диаграммы. Инвертирование - это процесс преобразования постоянного тока в переменный. В преобразовательных установках инверторный режим очень часто чередуется с выпрямительным, например, в электроприводах постоянного тока. В двигательном режиме преобразовательная установка выполняет функции выпрямителя, передавая мощность двигателю постоянного тока. При переходе электродвигателя в генераторный режим (движение под уклон, спуск груза, торможение и т.д.) преобразователь работает в инверторном режиме, отдавая энергию генерируемую машиной постоянного тока, в сеть переменного тока. Таким образом, при инвертировании источник постоянного напряжения работает как генератор электрической энергии, характеризующийся тем, что направление его ЭДС и тока совпадают, а нагрузка переменного тока - как потребитель, у которого направления ЭДС и тока встречные. Преобразователи частоты - это устройства, преобразующие переменный ток одной частоты в переменный ток другой частоты. В промышленных электроприводах постоянного тока эффективное и вместе с тем наиболее экономичное торможение двигателя может быть достигнуто переводом двигателя в генераторный режим, при этом преобразователь выполняет функцию инвертора и поток мощности, изменив направление, проходит от машины постоянного тока в сеть переменного напряжения. Принципиальная схема преобразователя, допускающего двухстороннее обращение потока мощности в вентильном электроприводе постоянного тока, приведена на рисунке. Питание вентиля осуществляется через две трехфазные группы обмоток, соединенных в зигзаг. Выходы от преобразователей присоединены к внешним зажимам машины противоположными полюсами. При такой перекрестной схеме система сеточного управления одного из преобразователей настраивается на работу его в качестве выпрямителя, питающего двигатель, а у другого - на работу его в качестве инвертора, ведомого сетью. Последний обеспечивает режим генераторного торможения. Сопряжение углов и определяющих положение внешних характеристик, производится, исходя из равенства средних значений напряжения на выпрямителе и инверторе при таком минимальном значении постоянного тока, ниже которого кривая выпрямленного тока становится прерывистой. При таком сопряжении углов и не только обеспечивается плавный переход от выпрямительного режима к инверторному, но и приемлемая величина циркуляционного тока, протекающего по замкнутым контурам анодных ветвей выпрямителя и инвертора. При уменьшении тока двигателя, при снятии нагрузки скорость вращения двигателя возрастет, при минимуме тока преобразователь переходит в инверторный режим. В приводе появляется при этом тормозной момент. Для получения минимального времени торможения угол опережения инвертора постепенно увеличивается по мере снижения скорости генератора. Движение рабочей точки в режиме форсированного торможения проходит по зигзагообразной кривой (левая часть рисунка), включающей пунктирные и промежуточные участки и участки инверторных характеристик. При выполнении преобразователя по перекрестной схеме возможно изменение направления вращения (реверс). При этом изменяется настройка углов управления: в инверторе от углов совершается переход на углы . А в выпрямителе углы заменяются углами . ЛИТЕРАТУРА 1. Преображенский В.И., Полупроводниковые выпрямители. М.: Энергоатомиздат. 1986 2. Промышленная электроника. Каганов И.Л., М. «Высшая школа», 1988. 3. Справочник по проектированию автоматизированного электропривода и систем управления технологическими процессами. Под редакцией Круповича В.И., Барыбина Ю.Г., Самовера М.Л. Издание третье. М.: Энергоатомиздат. 1982. 4. Беркович Е.И., Ковалев В.Н, Ковалев Ф.И. и др.Полупроводниковые выпрямители. М.: Энергия, 1978.
|
|