рефераты курсовые

Триботехнічні властивості: зносостійкість, зношування, тертя, покриття, залишкові напруги детонаційно-газових покриттів

p align="left">Одержання на контактних поверхнях вторинних структур із заданими властивостями суттєво залежить від хімічного складу застосовуваних компонентів, що, як показано, вибираються на базі основних положень триботехнічного матеріалознавства й теорії легування [20]. Підвищення зносостійкості поверхневих шарів і розширення діапазону структурної пристосованості при терті може бути обумовлене так само впливом певних конструкторських і технологічних засобів, які визначають склад і будова покрити й виявляють собою, з одного боку, керування навколишнім середовищем за рахунок використання масел (олив), які містять хімічні й поверхнево-активні домішки, створення позитивного градієнта механічних властивостей; додавання хімічно активних високотемпературних модифікаторів; застосування твердо- мастильних матеріалів; утвір на робочих поверхнях фаз і з'єднань, які легко плавляться; з іншого боку - за рахунок внутрішньої перебудови структурно-фазового складу поверхневих шарів і цілеспрямованого додавання легантив; сумісності матеріалів; застосування спеціальних методів термічної обробки й створення аморфно-кристалічних структур [7]. Таким чином, стабілізація фазового складу й внутрішньозернової структури покрити може здійснюватися шляхом раціонального з'єднання конструкторських і технологічних засобів з обліком трибологічних і матеріалознавських положень, які дозволяють керувати будовою й властивостями матеріалів пари тертя в потрібному напрямку й регулювати температуру зони тертя, забезпечуючи в процесі експлуатації умови перехід до режиму структурно-енергетичної пристосованості.

1.1.2 Вплив структури поверхневих шарів на їхню зносостійкість у процес ренію вузлів АНТ

Технологічні методи зниження інтенсивності зношування спрямовані на досягнення оптимальної топографії поверхні тертя, забезпечення низького опору зрушенню на границі роздягнула тертьових тіл і поліпшення структури поверхневого шару тіла, що зношується, формування оптимальної топографії. Для кожного вузла тертя й Певних режимів його про експлуатацію характерна своя оптимальна топографія поверхонь, що сполучаються, при якій спостерігається мінімальна інтенсивність зношування. Вона встановлюється в процесі приробляння незалежно від того, яка вихідна мікро геометрія була отримана технологічним шляхом. Чим ближче вихідна мікро геометрія до рівноважної, тем менше період приробітки. Оскільки під час приробляння спостерігається максимальне зношування, необхідно фінішну обробку деталей проводити так щоб вихідна шорсткість поверхні була можливо близької до рівноважної. Опромінення потоками енергії високої щільності. Для підвищення зносостійкості деталей використовують лазерне легування тонких поверхневих шарів металів і сплавів, локальне поверхневе загартування сталей, лазерне зміцнення титанових сплавів шляхом оксидування поверхневого зламування й зниження їх на водорожування в процесі тертя. До цієї групи можна віднести іонне бомбардування, обробку електронним променем, радіаційне опромінення (застосовується для деталей з поліетилена) іонну імплантацію, іонно-променеве перемішування. Хіміко-термічна обробка поверхонь. Цей метод дозволяє змінювати структуру й властивості поверхневого шару металів шляхом насичення його атомами легуючих елементів у процесі теплової обробки в хімічно активному середовищі. Залежно від виду легуючого елемента розрізняють цементацію, азотування, сульфоціанування силіціювання, оксидування, фосфатування, сульфидирование, хромування й інші приймання підвищення зносостійкості металів.

Матеріалознавські методи

Ці методи спрямовані на створення нових зносостійких матеріалів, оптимальна комбінація механічних, хімічних і теплофізичних властивостей яких забезпечує низькі коефіцієнт тертя й інтенсивність зношування при необхідних режимах навантаження. Різноманіття конструкції вузлів тертя, умов експлуатації й вимог до експлуатаційних, технічним і економічним характеристикам триботехнічних матеріалів привело до створення великої кількості методів їх одержання й зміцнення.

Досить сказати, що далеко не повний перелік технічних характеристик, яким повинен задовольняти матеріал, включає;

* забезпечення правила позитивного градієнта механічних

властивостей по глибині;

* здатність матеріалу локалізувати контактні деформації в можливо більш тонкому поверхневому шарі;

* здатність матеріалу створювати на поверхні тертя й безупинно відновлювати в процесі зношування пластичну плівку. що володіє низьким опором зрушенню й високим опором руйнуванню при багаторазовому знакозмінному деформуванні;

* сумісність із матеріалом контр тіла й мастильним матеріалом. низька адгезія до контр тілу й висока змочуваність мастильною речовиною;

* високі несуча здатність, теплопровідність і теплостійкість;

* низький коефіцієнт теплового розширення;

* стабільність і низькі значення коефіцієнта тертя й інтенсивності зношування;

* гарна приробітка і технологічність.

Оптимізація макроструктури матеріалів. Мікроструктура, або конструкція, матеріалу відіграє досить важливу роль у забезпеченні довговічності вузла тертя. Тому залежно від режимів навантаження використовують матеріали блокові, стрічкові, багатошарові, армовані й із плавно мінливими по товщині властивостями. Керування мікроструктурою матеріалів. Його досить великий матеріалознавський напрямок поліпшення триботехнічних властивостей матеріалів. Воно засноване на залежності зносостійкості й механічних властивостей металів від розміру зерна, кристалографічної текстури, а для полімерів від ступеня кристалічності, розмірів і типу надмолекулярних утворів. Зміна мікроструктури матеріалів досягається за допомогою термомеханічної обробки, вибору режимів формування деталі, впливу потоків енергії високої щільності, уведення активних наповнювачів і модифікаторів.

Вибір і модифікація сполучного. При одержанні деталей трибосистем з композитів важливу роль відіграє вибір сполучного, структура й властивості якого визначають припустимі режими експлуатації композита в цілому. У якості сполучного застосовують метали, полімерні матеріали, кам'яновугільний пек. Матеріали на основі полімерної матриці мають високі антифрикційні властивості й здатні експлуатуватися при середніх навантаженнях і швидкостях ковзання. Найбільше широко використовують поліаміди, фторопласти, полиацетали, фенодні, епоксидні й кремнієорганічні смоли, каучуки й поліуретани. Останнім часом велика увага приділяється полімерам "нового покоління" поліефір- ефиркетонам і поліакрил-ефиркетонам, що володіють високою термостійкістю й низьким коефіцієнтом тертя.

1.2 Основні триботехнічні методи зміцнення, при використанні порошкових матеріалів деталей АНТ

Спектр технологічних способів створення, поновлення й ремонту зносостійких антифрикційних покрити дуже широкий . Звичайно, на практиці в ремонтних підприємствах прагнуть сполучити вищевказані способи з операціями по формуванню необхідних фізико-механічних властивостей поверхневого шару, при цьому зарекомендував себе структурно-енергетичний підхід [12]. У роботах [13, 14] запропонований технологічний процес нанесення зносостійких і антифрикційних покрити методом плазмового й індукційного наплавлення. Однак, їм характерні істотні недоліки: деформація виробів, у наслідок високої погонної енергії наплавлення, нерівномірність властивостей матеріалів, які наплавляються, обмежений вибір їх з'єднань, значна пористість і ін. [13]. Більш прогресивному методу електро-контактного напрямку не властива рівномірності властивостей покриття, що створюються, не статистична репрезентабельність значень міцності зчеплення, зносостійкості, а також можливість створювати шари тільки на поверхні тіл обертання. [13]. У роботі [15] розглядається електроіскрове нанесення по епюру нерівномірного зношування дискретних покриттів. У роботах [13, 16, 17] відзначається застосування у вітчизняній і закордонній практиці поновлення зношених деталей різних модифікацій розпорошеністю металопокриттів. Але, при підвищених навантаженнях на зрушення й стиск, а також при відсутності змащення, металізовані покриття різко втрачають захисні властивості [17], а це, відповідно, обмежує їхнє застосування. Для електролітичних покрити [18-21] характерно негативний вплив товщини на втомну міцність. Звідси зниження витривалості основного металу, не герметичність покрити, не великий вихід по струму й мала продуктивність, слабка здатність електроліту розкривати й негативний екологічний вплив. Також застосування відзначених покриттів обмежується зношуванням, величина якого по технічних умовах не повинна перевищувати припустимих значень (до 200 мкм), а працездатність їх значною мірою залежить від умов розробки, змащення й зовнішніх впливів. Методи газотермічного напилення мають високу продуктивність і широке застосування як за асортиментами робітників матеріалів, так і по номенклатурі ремонтованих виробів. Технологія дозволяє одержувати покриття товщиною 2,0-4,5 мм, як на локально зношених ділянках, так і по всій робочій поверхні [12]. Визначальними технологічними параметрами газотермічних методів напилення є температура й швидкість газового потоку, що забезпечують відповідні енергетичні характеристики робочим часткам порошкового матеріалу, а також хімічний склад газового потоку, якої обумовлює характер його взаємодії з робочим матеріалом. До основних методам газотермічного напилювання, які придбали поширення в практиці ремонтних підприємств, ставляться: газополум'яний, плазмовий і детонаційно-газовый. Джерелом нагрівання часток матеріалу газотермічних покриттів є полум'я газових сумішей, а джерелом прискорення - струмінь стисненого повітря [23]. При формуванні теплового потоку використовується енергія, яка виділяється при згорянні суміші кисню й газу (пропан, бутан або ацетилен). Відзначимо, що кисневе полум'я має найбільшу теплоту згоряння й тому частіше використовується при напилюванні. Зазначені методи відрізняються між собою фізико-хімічними процесами робочих циклів, технологічним устаткуванням, закономірностями взаємодії матеріалів покриттів з газовими середовищами, особливостями формування покриттів і їх властивостями й, як наслідок, можливостями практичного застосування газополум'яного покриття. При застосуванні газополум'яного покриття, початкові матеріали можуть використовуватися у вигляді проведення, прутиків, порошків, або гнучких шнурів, оболонка яких складається з органічного полімеру. Швидкість польоту часток при газополум'яних покриттів залежить від тиску газів і розміру часток [14]. Наявність кисню в потоці газу значно обмежує номенклатуру матеріалів для створення покриттів, тобто матеріал, який використовується для газополум'яного покриття, не повинен розщеплювати й горіти в полум'ї. газополум'яне покриття в основному використовуються для захисту чорних металів від корозії, поновлення розмірів зношених легко навантажених деталей, підвищення антифрикційних властивостей пари тертя. До основних недолікам газополум'яних покриттів можна віднести недостатній рівень міцності зчеплення покриттів з основою, наявність пористості, яка перешкоджає застосуванню покрити в корозійних середовищах без додаткової обробки й невисокий коефіцієнт використання енергії газополум'яного струменя нагрівання порошкового матеріалу [17]. Плазмові покриття. Плазма є високотемпературним джерелом нагрівання й характеризується тому, що її теплоенергетичні й газодинамічні параметри (температура, швидкість, склад, тиск і ін.) можна регулювати в широких границях. Це дає можливість напилювати покриття з тугоплавких матеріалів у тому числі високотемпературні окисли й безкисневі тугоплавкі з'єднання. Але матеріал у плазмовому струмені повинний не сублімуватися й інтенсивно не розщеплюватися . Плазмові покриття характеризуються суцільною арковою структурою, яка виникає в результаті сильної деформації й дуже швидкої кристалізації часток покриття, тому місткість кисню й азоту в покритті може досягати десятих часток відсотка й більше . Слід зазначити, що при плазмовому напиленні інертні плазмостворюючі гази не створюють цілком захисну атмосферу на всій траєкторії польоту часток матеріалу покриття, тому властивості покрити відрізняються від властивостей початкового матеріалу. У цілому, плазмові покриття пористі й мають незначну міцність зчеплення . Зносостійкість покрити значною мірою визначається якістю підготовки поверхні до нанесення покриття з метою забезпечення максимальної її шорсткості й хімічної активності. Основу операції підготовки становить газоерозійнаі обробка з використанням кварцового піску або корунду зі сталевої крихти .Детонаційно- газові покриття. При детонаційно-газовому методі частки матеріалу покриття при напилюванні мають найбільшу швидкість. У такий спосіб обмеження по температурі напилювання компенсуються вищою кінетичною енергією часток. Виникає активна взаємодія спрямованих часток з поверхнею деталі й забезпечується висока міцність зчеплення (майже як у монолітному матеріалі [6]) і щільність покриття. Для детонаційно-газового напилювання придатна значна номенклатура порошкових неорганічних (а також тугоплавких) матеріалів і будь-які поверхні. Детонаційно-газові покриття добре зарекомендували себе в умовах підвищених навантажень і температур, інтенсивного зносу й агресивних середовищ. На основі аналізу вищевказаних робіт була складена таблиця 1.

Таблиця 1. Основні характеристики газотермічних методів нанесення зносостійких порошкових покриттів

Характеристика

Газотермічені методи

Газополум'є вий

Плазмовий

Детонаційний

Товщина покриття, мм

0,5ч5

Ограниченно тільки рівнем напруг, які накопичуються в мА матеріалі

Температура нагрівання основи, К

323ч523

473ч523

Швидкість часток покриття, м/с

50ч250

600ч1000 (1100ч1300 плазмовий імпульсний)

Пористість, %

20

до 25

0,5ч1

Производственная мощность установки, кг/ч

4ч8 и більше

25

Прочность зчеплення з основою, МПа

10ч35

15ч48

90ч180

Шорсткість напиленої поврхні (Rz), мкм

30ч55

20ч45

10ч35

Основними перевагами детонаційно-газових покриттів є:

- міцність зчеплення з деталлю (основою), яка перевищує міцність зчеплення покрити подібних методів в 5-9 раз і, у свою чергу, забезпечує їхню високу працездатність в умовах граничного тертя й при відсутності змащення;

- мала пористість, що дозволяє застосовувати покриття для деталей, які працюють в агресивних середовищах;

- менша шорсткість формуючої поверхні, яка залежить від дисперсності порошку, рельєфу поверхні й режимів, дозволяє застосовувати деталі з напилюванням без додаткової механічної обробки;

- широкий діапазон товщини напиленого шару дозволяє відновляти нерівномірно зношені поверхні зі значними локальними руйнуваннями;

- обмежена температура нагрівання деталі, практично не впливає на структуру матеріалу деталі й дозволяє наносити покриття з різних порошків не тільки на метали й сплави, але й на вироби із пластмас, гуми, скла й інше.;

- застосування спеціальних видів підготовки поверхні деталі до напилюванню (добре струмінна й піскоструминна обробка, вирівнювання) дозволяє не тільки зберегти початкову втомну міцність, але й підвищити її;

- простота налагодження встаткування й підготовки обслуговуючого персоналу. Однак слід зазначити, що на даному етапі для детонаційних методів нанесення зносостійких інше. характерне використання порошкових матеріалів утримуючих дорогі й дефіцитні компоненти (W, Nі, Co і ін.).

1.3 Обґрунтування доцільності відновлення деталей

При розв'язку питання про доцільний спосіб відновлення деталі, у якості оціночного показника потрібно встановити комплексний показник якості відновлення, що враховує ресурс відновленої деталі, сумарні витрати на відновлення й експлуатацію. За такий комплексний показник якості відновлення деталі можна прийняти інтегральний показник, де техніка - економічний ефект відновлення () ставиться до наведених витрат () на складання, зберігання, транспортування деталей, розробку процесу відновлення деталей, експлуатацію відновленої деталі;

;

Де ; ( ) - інтегральний показник якості відновлення деталі ;

=++

- вартість простою виробу ;

- собі вартість відновлення деталі ;

- вартість усунення відмов (заміна, регулювання)

і вартість ремонтних матеріалів, що витрачаються при усуненні відмов

Ефект від експлуатації деталі може, зокрема , виражатися у вигляді ресурсу деталі, якщо прибуток від її експлуатації пропорційна наробітку деталі. Найбільш ефективним є спосіб відновлення, що має максимальне значення . Для оцінки доцільності виробів можна зіставити показником якості нової деталі обумовленим аналогічно

; ;

Де;

- ефект від експлуатації нової деталі ; - витрати на виготовлення й експлуатацію нової деталі ;

Уведемо позначення ;

?= -;

?=-;

Тоді рівень якості відновлення виразиться у вигляді ;

Де - відносне зниження (або відносне підвищення при З 0) витрат на відновлення й експлуатацію відновленої деталі замість нової ;

? - відносне зниження значення показника якості відновленого виробу.

Тоді критерієм технічної й економічної доцільності відновлення або умовою ефективності відновлення якості виробу є виконання нерівності ;

I1 , отже ,

;

Якщо представляти процес відновлення в координатах ? , ? , то при заданих і ефективними той процес відновлення, який відповідає рівності ;

?= ?;

1.4 Постановка завдань дослідження

Таким чином, вивчення експлуатаційних ушкоджень залежно від характеру несправностей дозволяє укласти, що широка номенклатура рухливих з'єднанні бракується через підвищене локальне зношування й недолік технологічних рекомендацій і матеріалів по їхньому надійному ремонту відновленню. При цьому на ремонтних підприємствах у практиці поновлення об'єктів авіаційної техніки зложилося гостре протиріччя між необхідністю наступного підвищення зносостійкості відновлюваних деталей і відсутністю як науково обґрунтованих методів її підвищення, так і рентабельної технології їх поновлення. Відзначене протиріччя може бути дозволене шляхом всебічних експериментально-теоретичних досліджень фізико-механічних процесів підвищення поверхневої міцності застосовуваних при поновленні покрити й підвищення ефективності технологій ремонту. Що щодо мети магістерської роботи, означає розробку детонаційного зносостійкого покриття на основі не дефіцитних і не дорогих компонентів в умовах тертя й зношування, з позицій структурно-енергетичної теорії.

1.5 Розробка часткових завдань дослідження

Виходячи з мети роботи були розроблені наступні часткові завдання дослідження:

* розробити методологічні основи створення детонаційно-газових зносостійких покриттів з порошкових матеріалів системи Fe-Mn.

* установити компонентний склад детонаційно-газових зносостійких покриттів системи Fe-Mn

* вивчити закономірності формування й зношування поверхневих структур детонаційно-газових покриттів системи Fe-Mn

* установити галузі практичного застосування досліджуваних покриттів при зміцненні й поновленні деталей трибо технічного призначення

Розділ 2. Об'єкти, засоби й методика досліджень

Дослідження процесів тертя й зношування матеріалів вимагає комбінації теоретичних і експериментальних підходів, сполучення сучасних фізико-хімічних методів дослідження поверхні з досягненнями методології планування й обробки експерименту.

2.1 Науково-методологічні положення вивчення процесів тертя й зношування

У трибофізичних системах закономірності виникнення й розвитку процесів зношування визначаються властивостями поверхневих шарів. Залежно від умов тертя, якісні й кількісні параметри взаємодії поверхонь можуть змінюватися в широкому діапазоні. Розробка й застосування детонаційно-газових порошкових покриттів є одним з перспективних методів у триботехнічному матеріалознавстві. Специфіка застосування детонаційно-газового напилення обумовлена певною складністю процесів формування покриттів, принциповою новизною й істотними відмінностями їх від традиційних методів нанесення зносостійких шарів. Що, у свою чергу, вносить необхідність розробки науково-методологічних основ обґрунтування, постановки й проведення комплексних досліджень. Методологічний підхід допускає необхідність розгляду показників надійності деталей, які відновляються, розробку наукових основ впливу початкового порошкового матеріалу й вхідних технологічних параметрів напилення на оптимізацію властивостей покриттів, дослідження багатостадійних процесів у зоні контактної взаємодії, елементарним актом якого є розрив міжатомних зв'язків і структурно-фазові перетворення, руйнування й регенерація фрагментів тонких плівок (поверхневих структур). Особливість методичного підходу до аналізу процесів тертя й зношування детонаційно-газових порошкових покриттів, полягає в тісній взаємодії експериментальних і теоретичних методів, із застосуванням методик комплексного дослідження. Відповідно до цих методик і поставленими завданнями дослідження здійснювався аналіз якісних змін стану й властивостей поверхонь тертя, вивчення кількісних змін, які відбуваються при зношуванні, а також обґрунтування вибору приладів і встаткування. Відносно детонаційно-газових покриттів необхідно досліджувати: зміни структури в самих тонких поверхневих шарах пар тертя; зміни хімічного складу в тонких поверхневих шарах; теплові явища при терті й зношуванні покриттів; зміни механіко-фізичних властивостей поверхневих шарів трибоматеріалів; зміни мікрогеометрії поверхонь.

Фізико-механічний рівень. На відзначеному рівні враховувалося конструктивне різноманіття контактних поверхонь тертя. При цьому оцінки якості зносостійких детонаційно-газових покриттів у з'єднанні з аналізом умов їх експлуатації стали основою для обґрунтованого вибору показників довговічності деталей з урахуванням кількісних закономірностей процесу тертя й зношування. А саме, інтенсивність зношування (Іh) - показник зносу, адгезійна міцність зчеплення (узч) - показник впливу технологічних параметрів детонаційно-газового напилення, і мікротвердість поверхневих шарів покриттів (Зм) - показник, який обумовлює основні властивості матеріалу покриттів. Таким чином, ураховується вплив основних показників, які характеризують опір зносу й технологічний параметри покриттів, а також матеріалознавських, які зв'язані зі структурою й властивостями матеріалів для напилення.

Rфм = F(Іh, узч, Зм)

Метало-фізичний рівень. При дослідженні відзначеного рівня з метою вивчення закономірностей структури й будови покриттів, пояснення взаємозв'язків технологія - структура й будова - властивості були використанні тонкі методи дослідження. Це F рентгено-електрона спектроскопія, растрова електрона мікроскопія, рентгенівський мікроаналіз, рентгено-фазовий аналіз . Знання основ і можливостей зазначених методів є принциповою умовою успішної діяльності при розробці матеріалів для напилення й аналізу отриманих результатів і, у свою чергу, дозволило визначити наступні положення. Макроскопічні властивості матеріалу покриттів характеризують дія зовнішніх впливів на них. Однак зазначені властивості визначаються внутрішніми особливостями матеріалу (зокрема , розподілом і величиною залишкових напруг (узн), його структурою (S) і будовою (CS). При цьому під структурою будемо розуміти атомарна будова матеріалу, включаючи тип, число й розподіл дефектів кристалічних ґрат (вакансії, сторонні атоми, дислокації, границя зерен), а під будовою - кількість фаз, включаючи величину зерна, його взаємне розташування в обсязі й орієнтацію.

Rмф = F(узн, S, CS)

Фізико технологічний рівень. Одним з методологічних напрямків у розробці порошкових матеріалів для детонаційно-газових покриттів, які мають високі триботехнічні властивості, стало створення багатокомпонентних порошкових сумішей методом термодиффузійного легування за рахунок гетерогенізації початкової сировини. Проведені дослідження [24] показали, що для легованих сталей і сплавів отриманих методом дифузійного насичення, як показник доцільніше всього використовувати гранулометричний склад порошкових матеріалів (G). Гранулометричний склад, у свою чергу, змінюється в широкому діапазоні й залежить від складу початкової шихти (Cpш), режимів дифузійного насичення (rдн) і наступної обробки порошкового матеріалу (rобр).

Rфт = F(G),

де G = f(Cpш, rдн, rобр)

Інформаційний рівень. Розвиток і ускладнення методів дослідження, умов функціонування триботехнічних систем показує, що процес створення детонаційно-газових покриттів з керованими властивостями має багато розв'язків (іноді навіть не певних), тому дослідникові необхідно враховувати якість інформації (Q): важливість (іmp), терміновість (e), ступінь суперечливості (dc). Також прийняття того або іншого розв'язку, у свою чергу, залежать від характеру досліджень (TE): ресурсного забезпечення (rp) і наукової доцільності (se).

Rі = F(Q, TE),

де Q = f(іmp, e, dc)

TE = f(rp, se)

У якості трибопокриттів для порівняння використовували покриття на основі нікелю й карбіду вольфраму. Зазначені покриття одержали широке визнання в практиці й впровадження в промисловості.

2.2 Фізико-хімічні методи аналізу поверхонь тертя

Фізичні методи дослідження процесів тертя й зношування проводили на макро-, мікро- і субмікроскопічних рівнях. Макроскопічний аналіз здійснювався візуально й фотографуванням. Це дозволило оцінити ушкодження, ступінь при роботі й характер процесу зношування трибоповерхнні. Для мікроскопічних досліджень використовувався мікроскоп МІМ-8М. Підготовлялися мікрошліфи - у спеціальних струбцинах стикувалися, розділені мідною прокладкою, дві поверхні перетинання покриття. У наступному підготовка металографічних шліфів проводилася за методикою робіт. Визначення мікротвердості матеріалів покриттів проводили методами вимірів за Роквелом відповідно до ГОСТ 9013-59. Дослідження микробъемов детонаційно-газових покриттів покриттів здійснювали методом виміру мікротвердості поверхневих шарів відповідно до ГОСТ 9460-68 на мікротвердомірі ПМТ-3. Навантаження на індентор вибиралася виходячи з механічних властивостей досліджуваних покриттів і залишалися незмінної. Глибина відбитка не перевищувала 2 мкм. Шорсткість робочої поверхні шліфа при вимірах мікротвердості доводилася Ra=0,32 відповідно до ГОСТ 2789-73. Мікрорельєф поверхні вимірявся профілометром профілографом (мод. 201 заводу "Калібр"). Міцність зчеплення детонаційно-газових покриттів з металевою основою визначалася методом "конусного штифта" . Дослідження проводили на зразках, у яких штифт і отвір у шайбі мали форму конуса, що забезпечувало зменшення зазору в з'єднанні й збільшення точності виміру в порівнянні із циліндровою формою. Діаметр робочої поверхні штифта становив 1,5-2,0 мм, що виключало поперечне й змішане руйнування покриття. На поверхню штифта й шайби наносили покриття товщиною не менш 200 мкм. Випробування проводили на універсальній розривній машині УТС-10 зі швидкістю руху активного захоплення 2,0 мм/хв. Товщину покрити контролювали мікрометром. Щільність покрити визначали шляхом напилення на плоску сталеву основу шаром 6 мм, а потім відокремлювали й гідростатично зважували його за методикою викладеної в роботі [25].Для визначення інтенсивності зношування використовувалися схеми торцевого тертя на установці М-22ПВ , у діапазоні швидкостей до 1 м/с і навантажень до 10 мПа. Рентгенофазний аналіз поверхонь тертя проводився дифрактометром ДРОН- УМ1. Зйомка здійснювалася в широкому кутовому діапазоні в З- випромінюванні. Спочатку прописувалася дифрактограма зі швидкістю 1/2 за хв. з обертанням зразків. Потім піки, виявляються більш детально прописувалися зі швидкістю 1/8є й 1/16є за хв. Напруга 25 кВ, струм - 15 мПа. Дослідження хімічної мікро неоднорідності здійснювалося мікроаналізатором фірми "Cameka" моделі MS-46. Вимір інтенсивності рентгенівський проводили в тотожних ділянках мікроструктури. Були отримані знімки в поглинених електронах і рентгенівських променях. Електронні мікрофотографії детонаційно-газових покриттів робили на мікроскопі JEM-100CXP при зйомці в трансмісійному режимі за допомогою двоступеневих вуглецевих реплік, що напилювався у вакуумі й відтінялися окисом вольфраму. Напруга, яка пришвидшує, була 80 кВ. Рентгенографічне вивчення тонкої структури проводилося на установці УРС-50И с іонізаційним записом в Fe- випромінюванні. Для фізичного розширення ліній обумовленого диспергуванням кристалітів і перекручуванням кристалічних ґрат. З метою виявлення закономірностей між структурою й властивостями детонаційно-газових покриттів використовувався метод апроксимації з наступним уведенням виправлень. Розміри блоків мозаїки підраховували методом екстинкції. Для дослідження самого тонкого поверхневого шару (продуктів зношування) застосовувався метод дифракції електронів на установці ЭМР-100 у режимі дифракції на відображення з поверхні тертя при напрузі, яка з ковзає , 100 кв.

2.3 Математична модель процесів тертя й зношування покрити по пружно - пластичній основі

На підставі [12-21] простір існування властивостей детонаційно-газових покриттів можна описати, як: Щ (Rфм Rмф Rфт Rі)

З обліком першого обмеження: Щ Ш

де Ш - простір у якому властивості детонаційно-газових покриттів мають фізичний сенс.

Приймаючи до відома тези "технологія-структура" і "структура-властивості" додаємо друге обмеження фазовий коефіцієнт дефектності матеріалу, якої показує як дана структура покриття співвідноситься з його ідеальною структурою в умовах коли структурна густота постійна, (Кдф) > 1 Відносно триботехнічних властивостей відзначених покриттів додаємо третє й четверте обмеження:

У такий спосіб: mіn І = f(Щ)

Для практичних розрахунків ухвалювали дещо спрощений підхід:

де І - інтенсивність зношування;

- вектор змінних факторів;

- вектор супутніх факторів.

= {V, P, T, p, M, L, ф}

де V = [0,1ч2] - швидкість ковзання, м/с;

P = [1ч20] - навантаження, МПа;

T = [423ч823] - температура нагрівання, oК;

p ?105 - тиск, Мпа;

M - матеріал пари тертя;

L - мастильний матеріал;

ф = [1ч5] - час, год.

= {у, Hм, t, м, R, }

де у - адгезійна міцність зчеплення;

Hм - мікротвердість;

t - температура в локальному контакті;

м - коефіцієнт тертя;

R - режими нанесення покриття;

- вектор факторів, які не враховуються.

2.4 Планування експерименту й обробка результатів експериментальних досліджень

Основна складність при вивченні процесів тертя й зношування є наявністю великої кількості флуктуацій, керованих і контрольованих факторів. Також необхідно відзначити, що на умови формування детонаційно-газового покриття не однозначно впливають біля двадцяти п'яти факторів (конструкція установки, властивості порошкового матеріалу й ін.). Однак методи планування експерименту дозволяють ефективно орієнтуватися й досягати мети в умовах складних слабко організованих системах, а також забезпечити задану точність обробки результатів і їхня відтворюваність. На думку авторів [17] знос матеріалів у процесі тертя підкоряється нормальному або логарифмічно нормальному закону розподілу. Математична модель процесу відображалася у вигляді системи рівнянь, які зв'язують функцію відкликання (Іh) від вибраних факторів у вигляді полінома третьої (в окремих випадках другого) ступеня за допомогою спеціалізованих пакетів "Excel", "Mathcad" з використанням типових вбудованих функцій. У цілому повно факторний експеримент організовували за методикою викладеної в роботах [18,20]. Методом апріорного ранжирування визначали число факторів (n=3) і кількість досвідів N=2n. З метою усунення впливу флуктуацій і інших не бажаних факторів експеримент рандомізували за законом більших чисел. Потім, задавали рівні варіювання й становили матрицю планування експерименту. Надалі додатково використовувалися рекомендації робіт [12,13].

Кількість паралельних досвідів вибиралася за формулою:

K ,

K - кількість паралельних досвідів; - критерій Стьюдента; - середня квадратична погрішність; е - довірча точність.

У роботі перебувало по статистичних таблицях при прийнятій довірчій імовірності 0,95. е - ухвалювали рівним 5%. Кількість паралельних досвідів при цьому варіювалося від 3 до 6.

Середнє значення параметра й дисперсія паралельних досвідів визначалися за формулами:

,

де І=1, 2,. . . N

Перевірка відтворюваності проводилася за формулою:

Можливість проведення регресійного аналізу оцінювали однорідністю дисперсій рівно відповідних досвідів (критерію Кохрена):

Gрасч= Gтабл.

Табличне значення критерію Кохрена обчислювалося виходячи з N=8, числа ступенів волі f=k-1, рівень значимості б=0,05 і довірчої ймовірності 0,95. У випадку Gтабл. < Gрасч перебувала дисперсія відтворюваності й помилка експерименту по формулах:

Потім обчислювали коефіцієнт рівняння регресії й взаємодії:

Перевірку статистичної значимості робили по t- критерії, шляхом знаходження

середньоквадратичної погрішності коефіцієнтів регресії:

Далі знаходили довірчий інтервал:

2?bi : ?bi = tкр S(bi)

У випадку не статистичної значимості коефіцієнтів регресії їх виключали. Рівняння регресії перевірялося на адекватність відповідно до критерію Фишера:

Fрасч.

При прийнятій довірчій імовірності 0,95. Якщо Fрасч.? Fтабл., то отримане рівняння аналізувалося.

За відзначеною методикою оброблялися результати всіх експериментів.

Розділ 3. Експериментальні дослідження зносостійкості легованих fe-мn детонаційно-газових покриттів

Заміна композиційних покрити на основі нікелю не можлива без розуміння глибоких теоретичних принципів і масштабних експериментальних досліджень. Як з наукової, так і із практичної точки зору необхідно ясно представляти дороги створення зазначених покрити й галузі їх застосування.

3.1 Обґрунтування вибору легуючих елементів і їх оптимальний зміст у композиційному покритті

Одержання детонаційно-газових покриттів із заданими властивостями зв'язане, на маса перед, з оптимізацією багатокомпонентних систем, де окремі фази їх - матеріал матриці й додані легування виконують комплекс специфічних функцій . Якщо звичайно строк "конструювання" застосовувався тільки до машин, механізмів або встаткування, то зараз, він поширився й на матеріали. "Конструювання" матеріалу (інженерія поверхні [...]) - це одержання заданої його структури й, відповідно, керування й прогнозування експлуатаційних властивостей. Обґрунтований вибір компонентів при формуванні детонаційно-газових покрити з попередньо заданими характеристиками, які мінімізують процеси трибоактування, повинний враховувати комплекс властивостей матеріалів і середовища. Саме такий комплекс повинен сприяти стійкої реалізації універсального явища структурної пристосованості в процесі тертя. Одним з напрямків при цьому є створення багатокомпонентних порошкових сумішей шляхом гетерогенізації й термодиффузійного насичення початкової сировини легуючими елементами. Також, дефіцитність і необхідність раціонального використання нікелю висунуло проблему пошуку його заміни .Даній проблемі присвячені широкі теоретичні й експериментальні дослідження [8]. Автором почата спроба на основі експериментальних і теоретичних узагальнень створити детонаційні безнікелеві покриття, які мають високі властивості, за рахунок цілеспрямованого використання марганцю, як еквівалентної заміни нікелю. З робота [6-8] відомо, що є значні розбіжності між марганцем і нікелем, що як легують елементами й це не дозволяє створювати аустенітні постійні системи

Fe-Mn-Cr, які б не вступали широко відомим системам Fe-Cr-Nі (промислові марки типу Х18Н10, Х23Н18) . Вивчення структурно-фазового складу, триботехнічні досліди [13] і теоретичні принципи про вплив окремих легуючих елементів, дали можливість експериментально оптимізувати склад композиційних покрити системи Fe-mn-cr. Таким чином, раціональне легування елементами вплинуло на фізико-хімічні властивості згаданої системи й існуючий досвід [14] дало можливість створити композиційні покриття, які за триботехнічними характеристиками не уступають нікелевий. Також, слід зазначити високу техніко-економічну доцільність застосування Fe-Mn-Cr покрити в порівнянні з нікелевими. Вибір порошку заліза, як початкової сировини, обумовлений він порівняно дешевиною, не дефіцитністю й розширеної в природі, а також можливістю багатокомпонентного легування з утвором аустенітної структури, особливо для елементів з обмеженою розчинністю. Перевагою стабільних аустенітних структур є відсутність перетворень і стійкість у широкому діапазоні робочих температур . Підкреслимо, що висока розчинність легуючих елементів - є принципово важливою особливістю заліза, як матеріалу основи. При цьому залежності, що легують добавки в, від їхнього внеску в процеси зміцнення розділяють на: елементи, які входять до складу матриці й вносять внесок у твердо розчинне зміцнення (Cr, Co і деякі інші перехідні метали); елементи, які входять до складу фаз, які кріплять тобто створюють дисперсні частки тугоплавких з'єднань (Al, Nb і ін.) і активні елементи, які суттєво поліпшують характеристики в'язкості руйнування й пластичності (N, B). Активні елементи, у результаті великої невідповідності розмірів своїх атомів від атомів матриці, регулюються на границях зерен і в такий спосіб заповнюють вакансії й знижують зерно - граничну дифузію . Марганець має вищу хімічну активність (у порівнянні з нікелем) щодо кисню, азоту, вуглецю, тому існує більша ймовірність переходу його в карбідні й нітридні фази, навіть при наявності в складі композицій сильних нітридо - або карбідо - елементів, що створюють. Це сприяє активному утвору фаз, які кріплять. Крім того, при концентраціях до 15% Mn знижує на відміну від Nі енергію дефектів додавання в аустенітній структурі, чим обумовлює вищу здатність до зміцнення системи Cr-Mn. Оптимальна концентрація Mn, як установлено експериментом, становить 11% . Застосування марганцю сприяє зменшенню коефіцієнта дифузії заліза в аустеніті, який сприятливо впливає на жароміцність. Так само зменшенню рівня пружно - пластичної деформації в процесі активації сприяє введення алюмінію за рахунок зниження ступені розщеплення дислокацій . Відомо термодифузійне насичення порошку заліза, як матеріалу основи, хромом і нікелем. Співвідношення хрому й нікелю при цьому подібно складу аустенітної сталі . З метою підвищення зносостійкості детонаційно-газових покрити порошок заліза був термодифузійним легуванні хромом. Хром, частково розчиняються, збільшує кількість міжатомних зв'язків, зменшує дифузійну рухливість атомів твердого розчину, а це сприяє підвищенню поверхневої міцності напилених покриттів. Також додавання хрому утворює значна кількість фаз, які кріплять, і позитивно впливають власними присутностями у твердому розчині, тому що підвищують його термічну стійкість. Тобто згадані фази гальмують процеси руйнування при високих температурах, за рахунок затримки процесів коагуляції й рекристалізації. Таким чином, вплив фаз, які кріплять полягає в не допустимості або затримці процесів дифузії, які необхідні для атомного обміну в процесах коагуляції й рекристалізації. У роботі [9] увага обігу на те, що хром впливає на розчинність Al, Tі й Ta у фазах, які кріплять. Крім того додавання хрому впливає на утвір різних за будовою й властивостями вторинних структур . Одним з напрямків у розробці зносостійких покрити, які здатні стабільно працювати в умовах підвищених температур і багатогодинних діючих напруг, є стабілізація мікрогетерогенної структури шляхом додавання тонких часток фаз, які кріплять. Ефект зміцнення залежить від ряду факторів. Найважливішої з них є нерозчинність дисперсної фази в металевій матриці, її термічна стабільність і відсутність значного росту часток у процесі експлуатації. Слід зазначити, що найбільш перспективні бориди, нітриди й окисли, тому що вони мають високу термодинамічну стійкість . Існуючи практично без зміни до температур при яких інші фази, які кріплять, з елементів ІVA і VB груп повністю розчиняються в матриці, вони стабілізують мікрогетерогенну структуру й, що особливо важливо, не підвищують при цьому критичну температуру крихкості. Закономірності вибору боридив, нітридив і окислів, у якості фаз, які кріплять. для матриць із Nі й Fe вивчені мало . З метою підвищення зносостійкості покрити за розробленою технологічною схемою були отримані багатокомпонентні порошкові суміші, де окремі гранулометричні частки яких у результаті взаємодії (певної термодинамічними й дифузійними характеристиками) складалися з мікрообсягів декількох компонентів, які відрізняються за хімічним складом. Алюміній, вибраний як легуючий доповнення, по-перше, значно кріпить твердий розчин і

робить внесок у твердо - розчинне зміцнення; по-друге, його головне призначення в тому, щоб, при взаємодії з матеріалом основи утворювати фази, які кріплять і, таким чином, забезпечувати дисперсне зміцнення. Роль фаз, які кріплять для покриттів, що напилюються, значно більш складна й менш вивчена з теоретичної точки зору, чому їхня роль у монолітних матеріалах [2]. Також, на нашу думку, алюміній вигідно відрізняється тим, що активно сприяє утвору плівок окислів, які мають механічну цілісність на поверхні й низьку дифузійну проникливість. У роботі [5] відзначається, що додавання в шихту алюмінію поліпшує триботехнічні характеристики за рахунок екзотермічної реакції при взаємодії з окислами й, тому зменшує пористість і підвищує твердість газотермічних покриттів. Додавання бору обумовлене створенням важливого й великого класу неорганічних з'єднань, які відрізняються значною твердістю, тугоплавкістю, високою хімічною стійкістю. Відповідно до відомих теоретичних вистав бориди ефективно підвищують поверхневу міцність і зносостійкість, тому що вносять відповідний внесок у величину дисперсного зміцнення. Основні закономірності фізико-механічних властивостей металоутворених з'єднань бору сформульовані в роботах [9, 15]. У наслідок різних розмірів атомів і низькою якістю в матеріалі матричної фази бор сегрегірує на зерно граничних вакансіях і знижується швидкість здійснення дифузійних перетворень на границях зерен. При цьому має місце не тільки сегрегація бору в атомарній формі, але й утворення боридів. Основні теоретичні положення раціонального й комплексного додавання легантів і реалізація емерджентного ефекту від загального впливу декількох механізмів зміцнення були досліджені експериментально. Оптимізація композитного порошку для детонаційно-газових покрить системи Fe-Mn-Cr здійснювалася дослідженням впливу легуючих елементів, які додавалися, на певні характеристики покрити. Для алюмінію експериментально встановлений оптимальний зміст становить 8% (мал. 3.1).

Страницы: 1, 2, 3, 4


© 2010 Рефераты