рефераты курсовые

Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками

Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками

СХІДНОУКРАЇНСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

імені ВОЛОДИМИРА ДАЛЯ

Старченко Валерій Миколайович

УДК 629.4.027:625.1.03:621.891

Наукові основи підвищення ефективності

гальмування поліпшенням умов взаємодії коліс

з гальмівними колодками і рейками

05.22.07 - Рухомий склад залізниць і тяга поїздів

Автореферат

дисертації на здобуття наукового ступеня

доктора технічних наук

Луганськ - 2008

Дисертація є рукописом.

Роботу виконано в Східноукраїнському національному університеті імені Володимира Даля Міністерства освіти і науки України.

Науковий консультант:

доктор технічних наук, професор, заслужений діяч науки й техніки України Голубенко Олександр Леонідович, Східноукраїнський національний університет імені Володимира Даля, ректор

Офіційні опоненти:

доктор технічних наук, професор Коротенко Михайло Леонідович, Дніпропетровський національний університет залізничного транспорту імені академіка Всеволода Лазаряна, професор кафедри «Теоретична механіка»;

доктор технічних наук, професор Маслієв В'ячеслав Георгійович, Національний технічний університет «Харківський політехнічний інститут», професор кафедри «Електричний транспорт і тепловозобудування»;

доктор технічних наук, професор Головінов Геннадій Георгійович, Академія митної служби України, начальник кафедри «Транспортні системи і технології в митній справі»

Захист відбудеться 26 травня 2008 р. о 10 00 на засіданні спеціалізованої Вченої ради Д 29.051.03 Східноукраїнського національного університету імені Володимира Даля за адресою: 91034, м. Луганськ, кв. Молодіжний, 20а, СНУ ім. В. Даля, корп. 1.

З дисертацією можна ознайомитися в науковій бібліотеці університету за адресою: 91034, м. Луганськ, кв. Молодіжний, 20а, СНУ ім. В. Даля.

Автореферат розіслано 25 квітня 2008 р.

Вчений секретар спеціалізованої вченої ради Ю.І. Осенін

ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Вступ. Залізниці України є базовою галуззю економіки країни й основою її транспортної системи. Експлуатаційна довжина мережі залізниць становить понад 22 тис. км і за вантажонапруженістю перевищує показники розвинених європейських країн.

Загальною тенденцією розвитку залізничного транспорту є підвищення осьової потужності тягового рухомого складу і збільшення швидкості руху. У минулому році електропоїзд серії TGV (Франція) показав рекордну швидкість - 574,8 км/год, а технічно реальною та економічно виправданою нині прийнято максимальну швидкість руху в 350 км/год. Рух потягів в Україні здійснюється з максимальною швидкістю 160 км/год і до 2012 року заплановане її підвищення до 200 км/год. В основному обмеження швидкісного режиму обумовлено вимогами безпеки руху, проблемами гальмування та взаємодією швидкісного рухомого складу і колії.

У процесі експлуатації поверхні катання й гребені ходових коліс взаємодіють із рейками, а у випадку колодкового гальмування - і з колодками на гальмівних осях. Внаслідок цього обидві пари тертя взаємно впливають на процес зношування коліс і рейок, на формування контактної зони між ними й рівень контактних напружень, що виникають, і, отже, на сили зчеплення, що визначають величину тягових і гальмівних зусиль рухомого складу.

Для підвищення ефективності гальмування рейкового рухомого складу необхідно створити гальмівними пристроями достатню гальмівну потужність і забезпечити стійке зчеплення коліс із рейками.

Актуальність теми. У швидкісних потягах для виконання нормативних вимог з довжини гальмівного шляху, часу гальмування й припустимому уповільненню додатково застосовуються магнітнорейкові та вихрострумові гальмівні системи, що не використовують зчеплення коліс із рейками, оскільки електродинамічні й механічні (фрикційні) пристрої мають обмеження по зчепленню й недостатню гальмівну потужність.

У той же час за умовами безпеки при службовому, повному і екстреному гальмуванні механічні гальма є незамінною гальмівною системою. Гранична гальмівна потужність колодкових і дискових гальм не перевищує відповідно 650 кВт і 800 кВт на одну колісну пару, що обумовлено зростанням руйнуючого термічного впливу на контактні поверхні коліс або дисків, а також на матеріал гальмівних колодок або накладок.

Підвищення ефективності механічних гальмівних систем рухомого складу (колодкових і дискових) можливе застосуванням нових фрикційних матеріалів і збільшенням зчеплення завдяки поліпшенню умов взаємодії коліс із рейками.

За останні 15 років ресурс вагонних коліс із 12 скоротився до 4...5 років, змінюваність рейок по бічному зношуванню головки виросла в 2...3 рази, а інтенсивність зношування гребенів досягла 0,5.. .2,5 мм на 10 тис. км пробігу. Істотний прямий і опосередкований вплив на зменшення ресурсу коліс і рейок справляють гальмівні колодки, а часта взаємна змінюваність - робота нових колодок зі зношеним профілем коліс і численні переточування бандажів через підріз гребенів - погіршують ситуацію. Витрати по утриманню рухомого складу й колії постійно збільшуються, а науково-технічна проблема додатково набуває економічного характеру.

Для прийняття обґрунтованих технічних рішень, що дозволили б поліпшити існуючий стан речей, необхідні поглиблені наукові дослідження з розробкою теоретичних положень і математичних моделей контактної, фрикційної й динамічної взаємодії для системи “гальмівна колодка - колесо - рейка“.

У зв'язку з цим підвищення ефективності гальмування рейкового рухомого складу застосуванням принципово нових фрикційних матеріалів для гальмівних колодок і поліпшенням умов взаємодії коліс із рейками є актуальною науковою проблемою, що має велике значення для розвитку й удосконалення залізничного транспорту.

Зв'язок роботи з науковими програмами, планами і темами. Дослідження, виконані в дисертаційній роботі, проводилися згідно з "Державною науково-технічною програмою розвитку залізничного транспорту України", "Програмою розвитку залізничного транспорту на 2005...2010 роки ", планом нової техніки Транспортної академії України і Укрзалізниці, планом нової техніки ВАТ “ХК “Луганськтепловоз” - тема ДО2004-01 "Науково-технічне обґрунтування вдосконалення ходових частин рухомого складу залізниць у 2004…2005 рр.", держбюджетних і господарських НДР згідно з темами: "Наукові основи, концепція й теорія створення перспективних конструкцій транспорту з поліпшеними енергетичними та екологічними характеристиками", "Наукове обґрунтування, виготовлення та випробування дослідних вузлів і деталей, виготовлених з композиційних матеріалів на основі вуглецю, для опорних і гальмівних пристроїв тепловоза ТЕП 150 і рухомого складу" (тема Т-133-05, № держ. per. 0105U006925).

Мета і завдання дослідження. Підвищення ефективності гальмування рейкового рухомого складу поліпшенням умов взаємодії коліс із гальмівними колодками і рейками при зменшенні інтенсивності зношування контактних поверхонь і збільшенні терміну служби.

Для реалізації поставленої мети необхідно вирішити такі завдання:

- удосконалити математичну модель динамічної контактної взаємодії колеса з рейкою, установити залежності для оцінки і уточнення рівня та характеру розподілу контактних напружень;

- удосконалити математичну модель взаємодії рухомого складу і колії, установити домінантні фактори і їхній вплив на рівень динамічних сил для визначення напрямку і раціональних параметрів конструктивного вдосконалення візкових рейкових екіпажів,

- розробити теоретичні основи, методику розрахунку, компонентний склад, структуру та конструктивне виконання гальмівних С-С колодок на основі вуглець - вуглецевих волокон з піровуглецевою матрицею для підвищення ефективності механічних гальмівних систем і зменшення термічного впливу на поверхню катання коліс;

- виконати комплексні експериментальні дослідження нових гальмівних С-С колодок і встановити закономірності впливу на їхні фрикційні характеристики якісного, кількісного і фракційного вмісту різних компонентів та модифікаторів тертя;

- встановити експлуатаційні характеристики і закономірності впливу на величину та стабільність коефіцієнта тертя питомого навантаження, швидкості ковзання та температури на контактній поверхні тертя;

розробити математичну модель нестаціонарного теплового процесу колодкового гальмування, встановити закономірності впливу різних компонентів на теплопровідність і ефективність гальмівних С-С колодок щодо зниження температурної напруженості;

розробити компонентний склад, структуру, технологічні схеми виготовлення і провести комплексні випробування натурних зразків антифрикційних самозмащувальних композиційних матеріалів на основі капролону з низьким і стабільним коефіцієнтом тертя для опорних пристроїв кузова на візки рухомого складу;

- створити експериментальні установки з вимірювальними комплексами та програмним забезпеченням для перевірки результатів теоретичних досліджень і відповідності математичних моделей реальним процесам взаємодії коліс з гальмівними колодками й рейками.

Об'єкт дослідження: процеси контактної, динамічної і фрикційної взаємодії коліс з гальмівними колодками та рейками.

Предмет дослідження: закономірності взаємодії коліс з гальмівними колодками і рейками під впливом конструктивних, технологічних, матеріалознавських та експлуатаційних факторів.

Методи дослідження. У теоретичній частині роботи використано основні положення класичної теорії пружності, механіки контактної взаємодії і механіки твердого тіла, спроможного до деформування, математичні методи розв'язку інтегральних рівнянь динамічних змішаних задач теорії пружності, математичне моделювання процесу руху потягу і чисельні методи розв'язку диференціальних рівнянь.

В експериментальній частині для обробки результатів випробувань використано методи теорії ймовірностей, математичної статистики та математичного планування експериментів.

Достовірність наукових результатів підтверджується результатами експериментальних досліджень, що засвідчує відповідність прийнятих допущень характеру вирішуваних завдань, правильний вибір способів і технічних засобів випробувань, вимірювальної та реєструючої апаратури і методів обробки результатів експериментів.

Наукова новизна отриманих результатів:

- одержала подальший розвиток математична модель динамічної контактної взаємодії колеса і рейки з урахуванням осциляції ядер інтегральних рівнянь, принципу граничного поглинання, що характеризує внутрішнє тертя, і збурювань у виді гармонійних функцій;

- уперше запропоновано теоретичне обґрунтування, компонентний склад, структура і конструктивне виконання гальмівних С-С колодок на основі вуглецевих волокон з піровуглецевою матрицею та модифікаторами тертя для гальмівних систем рухомого складу;

- уперше встановлено закономірності впливу на фрикційні характеристики гальмівних С-С колодок якісного, кількісного, фракційного складу компонентів і модифікаторів тертя, а також питомого навантаження, швидкості ковзання та температури контактної поверхні;

- удосконалено математичну модель нестаціонарного теплового процесу гальмування системи "гальмівні колодки - колесо - рейка" з умовою пропорційності теплового потоку, що виділяється в плямі контакту, потужності сил деформації від контактних динамічних напружень;

- експериментально встановлено закономірності впливу компонентів гальмівних С-С колодок на величину коефіцієнта теплопровідності, що визначає температурну напруженість контактної зони тертя;

- уперше експериментально встановлено експлуатаційні характеристики антифрикційних самозмащувальних композиційних матеріалів на основі капролону для опорно-повертальних пристроїв рухомого складу, раціональних за критерієм мінімізації коефіцієнта тертя.

Практичне значення отриманих результатів. Розвиток теорії динамічної контактної взаємодії колеса з рейкою сприяє визначенню дійсної величини і характеру розподілу контактних напружень для визначення тягових та гальмівних зусиль при багатомірному математичному моделюванні і дослідженні динамічних та теплових процесів при взаємодії екіпажа й колії. Встановлені закономірності дозволяють приймати раціональні конструктивні рішення при проектуванні, створенні і модернізації візкових рейкових екіпажів.

Пропоновані гальмівні С-С колодки відрізняються високими експлуатаційними і теплофізичними характеристиками, сприяють зменшенню термічного впливу на поверхню кочення коліс та рейок і підвищенню ефективності роботи гальмівних пристроїв. Використання С-С колодок дозволяє знизити зусилля натиснення у два рази при збереженні довжини гальмівного шляху й зменшити його величину при великих початкових швидкостях гальмування.

Використання в опорних пристроях антифрикційного матеріалу на основі капролону з наповнювачами у виді мінерального масла, дисульфід молібдену та лускатого графіту з низьким і стабільним коефіцієнтом тертя забезпечує зниження до 32% опору повороту візків щодо кузова в плані і завдяки цьому поліпшує умови взаємодії колеса з рейкою.

Практична цінність роботи підтверджена новими технічними рішеннями (двосекційна гальмівна колодка, фрикційний композитний матеріал, фрикційний диск, гальмо й ін.), які виконані на рівні винаходів і захищені авторськими свідоцтвами та патентами.

Розроблені математичні моделі, методики, алгоритми, програмні й технічні засоби знайшли практичне застосування в ВАТ «ХК «Луганськтепловоз» і ВАТ «ЛуганськПТІмаш» при створенні нового пасажирського тепловоза ТЕП 150, у процесі проектування й розробки перспективних вантажних і пасажирських тепловозів, дизель- і електропоїздів ДПЛ-2, ДЕЛ-02, ЕПЛ9Т, а також трамвайних вагонів.

Технічна документація на пропоновані композиційні матеріали використовується при виготовленні гальмівних колодок (накладок) для гальмівних пристроїв, у тому числі дискових гальм, і полімерних антифрикційних накладок - для підшипників ковзання й опорних пристроїв кузова на візки.

Основні результати досліджень, лабораторні стенди і установки використовуються в навчальному процесі, у науково-дослідній роботі, у курсовому та дипломному проектуванні при підготовці бакалаврів, фахівців і магістрів за фахом: «Рухомий склад і спеціальна техніка залізничного транспорту», а також у курсах дисциплін «Безпека руху залізничного транспорту», «Основи експлуатації транспортних засобів», «Локомотивне й вагонне господарство» тощо Східноукраїнського національного університету імені Володимира Даля.

Особистий внесок здобувача. Наукові положення, розробки і результати досліджень, котрі виносяться на захист, отримані автором самостійно і в основному опубліковані без співавторів. У спільних роботах здобувач:

запропонував підходи, виконав аналітичні перетворення й одержав асимптотичні розв'язки інтегральних рівнянь динамічних контактних задач щодо взаємодії колеса з рейкою, руху колеса по пружному шару і руху клина в пружному шарі [16, 17, 18, 35];

обґрунтував, виконав перетворення та одержав аналітичні залежності для вирішення динамічної контактної задачі з обмеженням при взаємодії колеса з рейкою [25];

запропонував конструктивні вдосконалення візків для підвищення тягових і гальмівних властивостей електропоїздів [33];

обґрунтував і розробив методику проведення експериментальних досліджень гальмівних колодок із С-С композитів [8, 9, 13, 14, 24, 26];

запропонував і розробив основні положення використання комп'ютерної вимірювальної системи для випробування гальмівних пристроїв [5, 37];

запропонував компонентний склад, структуру, розробив способи виготовлення модифікованих фрикційних С-С композитів [21, 26];

обґрунтував методику проведення експериментальних досліджень теплового стану фрикційних накладок гальмівних пристроїв, узагальнив результати досліджень [12, 24, 39];

запропонував компонентний склад, структуру, розробив технологічні схеми та способи виготовлення, керував проведенням випробувань антифрикційних матеріалів на основі капролону з наповнювачами у виді мінерального масла, дисульфіду молібдену й лускатого графіту [23].

Апробація результатів дисертації. Дисертаційна робота у повному обсязі повідомлена та обговорена на розширеному засіданні вченої ради Інституту рейкового транспорту, на постійно діючому спеціалізованому семінарі з наукового напрямку "Рухомий склад залізниць і тяга поїздів", на засіданні кафедри "Залізничний транспорт" Східноукраїнського національного університету імені Володимира Даля (СНУ ім. В. Даля) і одержала позитивну оцінку.

Основні результати теоретичних і експериментальних досліджень дисертаційної роботи доповідалися на: щорічних науково-технічних конференціях СНУ ім. В. Даля (Луганськ, 1989...2007 рр.); Всесоюзній науково-технічній конференції "Забезпечення надійності вузлів тертя машин" (Ворошиловград, 1988 і 1989 рр.); всесоюзних і міжнародних науково-технічних конференціях "Проблеми розвитку локомотивобудування" (Луганськ, 1990, 1993, 1995 рр., Москва, 1996 р.); міжнародних науково-технічних конференціях "Проблеми розвитку рейкового транспорту" (X-XVII конференції в Криму, 2000...2007 рр.); міжнародних конференціях "Проблеми механіки залізничного транспорту" (Дніпропетровськ, 2000, 2004 і 2008 рр.); VI-й Міжнародній науково-технічній конференції "Проблеми механіки гірничо-металургійного комплексу" (Дніпропетровськ, 2004 р.); міжнародних науково-технічних конференціях "Проблеми і перспективи розвитку транспорту промислових регіонів" (Дніпропетровськ, 2005 і 2006 рр.); Міжнародній науково-практичній конференції "Наука в транспортному вимірі" (Київ, 2005 р.); Міжнародній науково-практичній конференції "Наука в транспортному вимірі: пасажирські перевезення" (Київ, 2006 р.); міжнародних науково-практичних конференціях "Проблеми і перспективи розвитку залізничного транспорту" (64 - 67 конференції, Дніпропетровськ, 2004...2007 рр.); міжнародних наукових конференціях «Університет і регіон», Луганськ (2001…2007 рр.); Міжнародній науковій конференції "Наука, техніка й вища освіта: проблеми і тенденції розвитку" (м. Пореч, Хорватія, 2006 р.).

Публікації. За темою дисертації опубліковано 63 наукових роботи. З них 1 - монографія, 35 статей у наукових виданнях, 17 тез доповідей на конференціях, 10 авторських свідоцтв і патентів.

Основний зміст роботи викладено в 32 друкованих працях, які опубліковані у виданнях, затверджених ВАК України.

Структура й обсяг дисертації. Дисертаційна робота складається із вступу, семи розділів і додатків. Основний текст викладено на 297 сторінках, список літературних джерел містить 456 найменувань. Текст ілюструється 133 рисунками і містить 47 таблиць.

ОСНОВНИЙ ЗМІСТ

У вступі обґрунтовано актуальність і новизну тематики роботи, сформульовано цілі і завдання дисертації, обрано об'єкт, предмет та методологію дослідження, сформовано основні напрямки вирішення проблеми.

У першому розділі наведено аналіз наукових праць з проблеми контактної, фрикційної й динамічної взаємодії коліс із рейками й гальмівними колодками, довговічності елементів системи «гальмівна колодка-колесо-рейка», ефективності фрикційних матеріалів і процесу гальмування рухомого складу.

Дотична сила зчеплення при русі в режимі тяги або гальмування реалізується на контактній площадці взаємодії колеса з рейкою й залежить від безлічі невизначених факторів, що постійно змінюються, обумовлених фізико-механічними властивостями матеріалів, трибологічним станом поверхонь тертя, конструктивним виконанням екіпажа, станом рейкової колії, зношенням контактних поверхонь коліс і рейок, умовами зовнішнього середовища та ін.

Основними з множини факторів є контактні напруження, відносне ковзання (проковзування, крип) і тертя, що виникають при взаємодії колеса з рейкою та гальмівними колодками. Основою для вирішення прикладних контактних задач взаємодії колеса з рейкою є класичні методи теорії пружності і механіки твердого тіла, спроможного до деформування. Поверхня катання колеса взаємодіє з рейкою та гальмівними колодками і є загальною поверхнею тертя, що й спричиняє взаємовплив елементів системи "гальмівна колодка - колесо - рейка" на їхню зносостійкість і термін служби (рис. 1). Особливо це проявляється в процесі гальмування, коли поверхня катання колеса має контактну взаємодію з рейкою і фрикційне - з гальмівними колодками, при цьому теплові потоки від роботи сил тертя розігрівають контактну поверхню колеса до 400...1000°С, що сприяє інтенсивному зношуванню елементів системи й утворенню після остигання термічних мікротріщин на ободі, котре є наслідком нерівномірності температурного поля на поверхні і усередині матеріалу колеса при значній термонапруженості.

При математичному моделюванні руху локомотива у виді просторової механічної коливальної системи з багатьма степенями вільності збурюючий вплив від колії прийнято задавати у виді функцій переміщення у вертикальній і горизонтальній площинах, які визначаються незалежно і можуть задаватися детермінованими або стохастичними. Найчастіше випадкові збурення задаються методом пропускання «білого шуму» крізь лінійний фільтр.

При високих швидкостях руху необхідно враховувати систематичні збурення в системі “колесо - рейка” від дії плавних ізольованих нерівностей (катана вибоїна), повзунів і безперервних плавних нерівностей на поверхні катання (некруглостей коліс), які виникають при нерівномірному прокатуванні по колу колеса і його ограновуванню при гальмуванні. Із зростанням прокатування збільшуються прослизання, сили крипу і рівень динамічних сил в зоні контактної взаємодії колеса з рейкою, особливо в кривих ділянках колії. При цьому величина контактного напруження перевищує пороговий рівень, що підвищує вірогідність виникнення втомних руйнувань, сприяє інтенсивному зношуванню і скороченню терміну служби коліс і рейок. З цієї причини швидкісні залізниці - Cartier в Канаді і Spoornet в ПАР - ввели як критерій вилучення коліс з експлуатації глибину прокату 2 мм.

Класичні роботи з теорії пружності, дослідження взаємодії рухомого складу і колії, зчеплення колеса з рейкою, контактних задач і процесів гальмування отримали значний розвиток в роботах А.І. Бєляєва, М.М. Бєляєва, І.В. Бірюкова, Є.П. Блохіна, М.Ф. Веріго, Л.О. Вуколова, Л.О. Галіна, О.Л. Голубенка, І.Г. Горячевої, В.М. Данілова, Ю.В. Дьоміна, А.С. Євстратова, О.П. Єршкова, В.М. Іванова, В.Г. Іноземцева, І.П. Ісаєва, О.Ю. Ішлінського, В.М. Казарінова, О.Я. Когана, О.М. Коняєва, К.П. Корольова, М.Л. Коротенка, С.М. Куценка, В.А. Лазаряна, Д.П. Маркова, В.Г. Маслієва, В.Б. Меделя, М.І. Мусхелішвілі, Ю.І. Осеніна, А.П. Павленка, Д.Ю. Погорєлова, Е.Д. Тартаковського, Т.А. Тібілова, С.П. Тимошенка, В.Ф. Ушкалова, І.І. Челнокова, В.М. Шестакова, І.Я. Штаєрмана та ін., а також в роботах зарубіжних дослідників Буссинеська (Boussinesq J.), Герца (Hertz H.), Грінвуда (Greenwood J.A), Гудьєра (Goodier J.N), Джонсона (Johnson K.L.), Калкера (Kalker J.J.), Картера (Carter F.W.), Каттанео (Cattaneo C.), Кноте (Knothe K.), Креттека (Krettek O.), Лява (Love A.E.H.), Ляме (Lamе G.), Міндліна (Mindlin R.D.), Черруті (Cerruti V.) та ін.

У більшості робіт, присвячених дослідженню процесу зношування коліс і рейок, розглядається тільки пара тертя колесо-рейка і не враховується вплив іншої пари тертя - гальмівна колодка-колесо. Неправомірність такого підходу виходить з експлуатаційних спостережень, які показують, що гальмівні колодки значно впливають на інтенсивність зношування коліс і рейок. Металокерамічні гальмівні колодки мають більш високий коефіцієнт тертя, а відповідно і ефективність гальмування, але зумовлюють значно більше зношування коліс і внаслідок впливу останніх (у здеформованому стані) - підвищене зношення рейок. Таким чином, при оптимізації твердості матеріалів у системі “колесо - рейка” необхідно враховувати не тільки осьове навантаження, радіуси кривих ділянок колії і конструкцію гальмівної системи, але й вплив гальмівних колодок.

Колодкові гальма при початковій швидкості гальмування понад 140 км/год не забезпечують необхідної ефективності через недостатню гальмівну потужність, що обмежується руйнуючим термічним впливом на поверхню катання коліс і гальмівних колодок. Тривале або екстрене гальмування композиційними колодками з низькою теплопровідністю призводить до локального перегріву контактних поверхонь, при цьому утворюються напливи металу і відбуваються необоротні структурні перетворення їхнього зв'язуючого - смоли або каучуку, а при подальших гальмуваннях внаслідок цього на поверхні катання колеса утворюються подряпини, задири і термотріщини.

Для підвищення ефективності гальмування та зменшення термічного впливу на поверхню катання колеса необхідні принципово нові фрикційні матеріали - одночасно більш термостійкі і більш теплопровідні, застосування яких дозволило б істотно підвищити реалізовану гальмівну потужність на осі при безумовному дотриманні умов безпеки руху і нормативних вимог.

Збільшення терміну служби коліс і рейок завдяки лубрикації, а також оптимізація твердості матеріалів до НВ 370...400 уже показали високу ефективність, однак не вважаються вичерпними й достатніми, тому що підвищене зношування бічної грані рейок і гребенів коліс зумовлене значним горизонтальним тиском коліс на рейки, тобто напрявляючим зусиллям і кутом набігання коліс, а також збільшеною тривалістю взаємодії гребенів коліс із рейками при русі в кривих, а також і на прямих ділянках шляху.

При підвищеному моменті тертя в опорних пристроях кузова на візки зростання інтенсивності зношування бічної грані рейок і гребенів коліс сягає рівня 45%, що зумовлено збільшенням направляючого зусилля в зоні контакту гребеня колеса з рейкою при вписуванні візкових екіпажів у криві ділянки і наступному русі з перекосом у прямих ділянках шляху. Аналіз указує на необхідність удосконалення конструкції візкових екіпажів і експлуатаційних характеристик вузлів тертя в зчленуванні кузова й візків не тільки з метою зменшення зношування, але й для підвищення зчеплення коліс із рейками завдяки поліпшенню умов їхньої взаємодії зменшенням перекошування.

На підставі досвіду експлуатації рухомого складу і аналізу літературних джерел з досліджуваної проблеми було визначено мету і завдання цієї роботи.

У другому розділі розглядаються двовимірні і просторові динамічні контактні задачі взаємодії колеса з пружною ізотропною рейкою, наведено механічну і математичну постановку задач і здійснене строге виведення інтегральних рівнянь з урахуванням принципу граничного поглинання. Досліджуються сталі режими вертикальних і кутових коливань колеса при взаємодії з пружною рейкою під дією гармонійного у часі ф навантаження .

Задачі формулюються таким чином, що одна з компонент напруження приймається такою, що дорівнює нулю на всій межі рейки. Виведення інтегрального рівняння для опису вертикальних коливань з використанням принципу граничного поглинання ґрунтується на розв'язку рівнянь Ляме. В цьому випадку збурена крайова задача набуває виду:

Використання принципу граничного поглинання і інтегрального перетворення Фур'є по змінній приводить задачі до розв'язку інтегрального рівняння щодо амплітудного значення невідомого нормального контактного напруження у виді:

Задачу руху колеса з постійною швидкістю по пружній рейці товщиною приведено до розв'язку динамічних рівнянь Ляме (1). Використовуючи інтегральне перетворення Фур'є для визначення контактних напружень , отримане інтегральне рівняння в безрозмірних змінних:

Ядро інтегрального рівняння (6) містить два безрозмірних параметри й, що входять у коефіцієнти, котрі характеризують товщину рейки і швидкість руху колеса.

Динамічна контактна задача щодо руху клина в пружному шарі, розвиток тріщини в рейці, приведена до розв'язку рівняння у виді:

Просторова динамічна контактна задача щодо вертикальних коливань колеса при довільній області контакту із пружним півпростором і дією гармонійного збурювання розглядається в припущенні, що в зоні контакту відсутні сили тертя і відрив колеса від рейки. Півпростір і колесо віднесені до прямокутної системи координат , поверхня контакту колеса з півпростором, що займає зону , знаходиться у площині . Застосувавши до рівнянь Ляме дворазове перетворення Фур'є, отримуємо двовимірне інтегральне рівняння першого роду (8) з нерегулярним різницевим ядром (9) щодо амплітудного значення нормального контактного напруження у виді:

За такою ж схемою отримано інтегральне рівняння для визначення контактних дотичних напружень. У вигляді окремого випадку отримані інтегральні рівняння вертикальних і горизонтальних коливань колеса при смуговому контакті із пружним півпростором.

Уводячи в розгляд трансформанти Фур'є функцій, і підставляючи їх в (8), одержимо інтегральне рівняння в безрозмірних змінних

Інтегральне рівняння (10) відрізняється від (3) для розв'язку плоскої задачі тільки параметром , тому використані такі ж методи розв'язку.

На прикладі задачі щодо вертикальних коливань колеса при взаємодії із пружною рейкою показано асимптотичні методи розв'язку інтегральних рівнянь, які дозволяють досліджувати основні характеристики задач із достатнім для практики ступенем точності.

При розв'язку двовимірної задачі щодо вертикальних коливань колеса під зусиллям у виді використано прийом накладення двох розв'язків: від статичної і динамічної дії, при цьому обмежений розв'язок від статичного зусилля отримано у виді. Обмежений розв'язок від динамічного зусилля отримано асимптотичним методом для випадку малих відносних частот коливань. Асимптотичні формули для визначення амплітудних значень нормальних контактних напружень набувають виду:

Використовуючи асимптотичні методи, за допомогою яких розв'язана плоска задача, розглянуто розв'язок і для просторової контактної задачі, що наведена до двовимірного інтегрального рівняння виду (8). Асимптотичні і чисельно-аналітичні методи теорії пружності і контактної механіки при дослідженні динамічних контактних задач щодо взаємодії колеса з рейкою дозволили визначити рівень контактних напружень і встановити характер їхнього розподілу по зоні контакту.

Отримані результати використані при багатомірному моделюванні руху візкового екіпажа локомотива в складі потяга для визначення сил зчеплення і теплового потоку, що виникає в контактній зоні тертя коліс із рейками в процесі їхньої взаємодії.

У третьому розділі одержали подальшого розвитку теоретичні дослідження динамічних характеристик екіпажів локомотивів на основі вдосконалення просторової математичної моделі руху локомотива в складі потяга. Моделювання проведено з метою визначення ступеня впливу на рівень динамічного діяння різних факторів конструктивного і експлуатаційного характеру, а також поліпшення характеристик і умов взаємодії рухомого складу й колії раціональним вибором параметрів та характеристик візкових екіпажів.

В основу побудови математичної моделі закладено загальноприйняті передумови (рис. 2). У моделі використано характеристики силових і пружних зв'язків, одержані дослідним шляхом на натурних пристроях.

Величина сили зчеплення визначається для кожного колеса залежно від швидкості руху і ковзання відповідних контактних поверхонь, нормального тиску та характеру його розподілу по зоні контакту при довільних профілях коліс і рейок з урахуванням їхнього взаємного розташування і фрикційного стану. Швидкість руху локомотива в поздовжньому напрямку визначається в процесі інтегрування диференціальних рівнянь руху, і на її величину ніяких обмежень не накладається.

У розрахунках ураховуються також електродинамічні процеси в тягових електродвигунах і поздовжні коливання вагонів у складі потяга.

Для складання диференціальних рівнянь руху використано рівняння Лагранжа другого роду у виді:

Збурююча дії від шляху задається незалежними функціями переміщення у вертикальній і горизонтальній площинах.

У моделі використано детерміновані збурювання у виді відомих синусоїдальних функцій з параметрами, що відповідають певному ступеню зношування або некруглостей коліс, а також випадкові збурювання - методом пропуску «білого шуму» через лінійний фільтр. Розв'язок рівнянь знаходиться в часовій зоні у виді відомого вектора стану. При моделюванні состава потяга залежно від кількості вагонів у математичну модель додається рівна кількість узагальнених координат.

За результатами інтегрування диференціальних рівнянь руху визначаються лінійні й кутові переміщення кузова, рам візків, колісних пар і тягових електродвигунів, сили зчеплення коліс із рейками, поперечні горизонтальні й вертикальні переміщення рейок, швидкості і прискорення тіл досліджуваної системи.

Моделювання силової взаємодії екіпажа тепловоза ТЕП 150 і рейкової колії виконано при розрахунковому навантаженні від колісної пари на рейки в 215 кН у швидкісному діапазоні від 40 до 200 км/год при русі в прямих і кривих ділянках колії з радіусом 300, 600 і 1000 м.

Результати розрахунків динамічних процесів за наведеною математичною моделлю тестувалися шляхом порівняння з результатами ходових динамічних випробувань тепловоза ТЕП 150, проведених відділом випробувань ВАТ «ХК «Луганськтепловоз». Результати порівняння показали задовільну збіжність за коефіцієнтами вертикальної і горизонтальної динаміки, рамними силами, вертикальними силами у буксовому підвішуванні, взаємним переміщенням елементів екіпажа і кузова, вертикальними і горизонтальними прискореннями візків і кузова. Розбіжність результатів за основними показниками не перевищує 15% (табл. 1).

Розрахунки й експериментальні дослідження показали, що екіпаж тепловоза ТЕП 150 за динамічними показниками відповідає нормативним вимогам: коефіцієнти вертикальної й горизонтальної динаміки не перевищують припустимих значень у швидкісному діапазоні до 160 км/год.

Моделюванням руху в прямих ділянках колії встановлено, що при взаємодії коліс зі зношеним профілем і новими рейками спостерігається незначний ріст вертикальних динамічних сил (? 5%), однак збільшуються динамічні горизонтальні і рамні сили, горизонтальні поперечні прискорення і переміщення (на 15...30%).

При русі локомотива, що має колеса із прокатом 5 мм, у кривих ділянках по нових рейках і колії в "гарному стані" збільшення показників горизонтальної динаміки не перевищує 10%, проте із погіршенням стану рейкової колії вплив зношування коліс на вказані показники значно зростає і сягає рівня 35%.

Таблиця 1

Зіставлення результатів розрахунку і експериментальних даних за основними динамічними показниками екіпажа тепловоза ТЕП 150

Моделюванням руху в кривих ділянках шляху радіусом 300, 600 і 1000 м при різних швидкостях руху і стандартних профілях коліс і рейок встановлено, що бічні і рамні сили, поперечні прискорення кузова і візків монотонно зростають із ростом швидкості руху і визначаються величиною моменту опору повороту візка щодо кузова в плані. Підвищений момент від сил тертя між ковзунами й полімерними накладками в опорних пристроях кузова на візки стало негативно впливає на рівень горизонтальних сил у системі “екіпаж-колія”, ріст бічних і рамних сил становить від 11 до 27%.

Встановлено математичним моделюванням, що для опорних пристроїв кузова на візки екіпажа раціональною величиною коефіцієнту тертя є 0,05...0,07, що зменшує тривалість і рівень силової взаємодії між колісьми і рейками в горизонтальній площині при русі в кривих і прямих ділянках колії.

Моделювання руху в режимі екстреного гальмування при стандартних чавунних і дослідних С-С колодках показало, що застосування пропонованих колодок дозволяє знизити натиснення у два рази при збереженні довжини гальмівного шляху, а також зменшити його при високих швидкостях руху. Стабільний і високий коефіцієнт тертя фрикційного спряження “гальмівна С-С колодка - колесо” дозволяє використати автоматизовану систему управління процесом гальмування, значно зменшити величину дійсного гальмівного шляху і термічний вплив на поверхню катання колеса.

Аналіз результатів математичного моделювання і експериментальних досліджень показав, що для підвищення ефективності гальмування та зниження інтенсивності зношування елементів системи “гальмівна колодка - колесо - рейка” необхідні нові фрикційні матеріали колодок з достатньо високим і стабільним коефіцієнтом тертя, котрі не спричиняли б руйнуючої термічної дії на поверхню катання коліс. Для підвищення зчеплення шляхом поліпшення умов взаємодії в системі “колесо - рейка” необхідно вдосконалювати візкові рейкові екіпажі з метою зниження моменту опору повороту візків щодо кузова в плані створенням і використанням в опорно-повертальних пристроях антифрикційних матеріалів з достатньо низьким і стабільним коефіцієнтом тертя.

Четвертий розділ присвячений питанням теорії, розробки методів розрахунку і удосконалення фрикційних С-С композитів для гальмівних колодок і накладок механічних гальмівних систем рухомого складу. Аналіз досліджень указує на істотну залежність для відомих матеріалів основного вихідного параметра фрикційного спряження - реалізованого коефіцієнта тертя - як миттєвих, так і середніх його значень, від рівня контактних напружень, швидкості ковзання і температури на поверхні тертя. Температурна напруженість контактної поверхні є інтегральним показником роботи сил тертя на контакті, що визначається питомим навантаженням і відносною швидкістю ковзання, а також теплофізичними властивостями матеріалу гальмівних колодок, зокрема, теплопровідністю.

Ця проблема є однією з найбільш актуальних як для колодкових, так і для дискових гальмівних пристроїв, оскільки при русі на затяжних спусках температура колодок у зоні взаємодії з колесом може досягати більше 1000°С, що відповідає важкому й надважкому режимам роботи фрикційного спряження, а в дискових гальмах у зоні плям припікання фактична температура досягає 800…1000°С.

У таких складних щодо температурної напруженості умовах можуть використовуватися фрикційні вуглець-вуглецеві композиційні матеріали (C-C композити), які являють собою вуглецеву матрицю, зміцнену вуглецевими волокнами. Механічними, фізичними й термічними властивостями композитів можна управляти шляхом зміни відповідних параметрів армуючого каркаса: орієнтацією волокон, об'ємним вмістом і кроком волокон по напрямках, щільністю каркаса, типом ниток і видом волокон, а також вибором матриці та способу виготовлення.

Початковими матеріалами для вуглецевих волокон є віскозні і поліакрилнітрильні (ПАН) волокна, які після високотемпературної обробки (карбонізація і графітизація) набувають високих міцнісних та пружних характеристик, термостійкості, стійкості до атмосферного впливу і хімічних реагентів.

Ущільнення багатонаправлених структур виконується методом осаджування вуглецю з газоподібного вуглеводню в спеціальних термоградієнтних газофазних установках типу АГАТ-1.6 і АГАТ-2.0 у Національному науковому центрі «Харківський фізико-технічний інститут». При цьому було використано метод радіально рухомої зони піролізу, наукові основи і реалізація якого запропоновані проф. В.А. Гуріним.

Запропоновано теорію і методику розрахунку пружних технічних констант просторово армованих КМ, що враховують ступінь армування і для яких початковими даними є модуль пружності, модуль зрушення і коефіцієнт Пуассона армуючих волокон і матриці (зв'язуючого) .

Визначення коефіцієнтів матриці піддатливості виконано методом Крамера шляхом розв'язку лінійних рівнянь закону Гука, що містять коефіцієнти жорсткості щодо деформацій і , представлених системою рівнянь (17), котра розпадається на дві незалежні системи для визначення й , кожна з яких розв'язується окремо:

Розв'язком системи рівнянь визначаються модуль пружності, модуль зрушення і коефіцієнт Пуассона просторово армованого композиту (рис.3). Реалізація методики розрахунку виконується програмним модулем, що враховує параметри початкових матеріалів і тип матриці.

Випробування показали, що С-С композити мають унікальні фрикційні властивості: коефіцієнт тертя при температурі в контакті 15 ... 20°С становить 0,2...0,3 і зі зростанням температури контактної поверхні тертя не зменшується, як у серійних фрикційних матеріалів, а збільшується до значень ? 0,4...0,6 і стабілізується при температурі більше 400°С.

З метою забезпечення достатнього і стабільного коефіцієнта тертя гальмівних колодок розроблено технологічні схеми і способи виготовлення модифікованих С-С композитів, у яких використано модифікатори тертя: оксид алюмінію (Al2O3), карбід бору (B4C) двох фракцій - грубозернистої й дрібнозернистої, а також дрібнодисперсний аморфний бор.

Експериментальні дослідження міцнісних, теплофізичних і триботехнічних характеристик «чистих» і модифікованих С-С композитів було проведено на дослідних і натурних зразках з різним вмістом (% по масі) вуглецевих волокон, піровуглецю, сітки з мідного дроту та модифікаторів тертя, - різних за типом і фракційним складом.

Вдосконалення технологічних схем виготовлення і використання нових перспективних технічних рішень дозволили зменшити собівартість виробництва фрикційних С-С композитів до рівня, що не перевищує двократної вартості звичайних композиційних матеріалів.

У п'ятому розділі наведено результати експериментальних досліджень експлуатаційних характеристик і ефективності використання гальмівних колодок із С-С композитів. Попередні випробування проводилися на стандартній машині тертя моделі СМЦ-2, а доводочні з натурними колодками - на спеціальній стендовій установці, що реалізує схему «обертовий вал - гальмівні колодки». При створенні експериментальної установки використано нові технічні рішення, зокрема гальмівні колодки мали два ступеня рухомості - за напрямом дії нормального зусилля притиснення і разом з контртілом - у напрямі обертання останнього під впливом сили зчеплення.

Для реєстрації вихідних параметрів процесу гальмування розроблено вимірювальну систему на базі персональної ЕОМ з аналого-цифровим перетворювачем (АЦП) і керуюча програма (АDC) на мові програмування Delphi для роботи в операційних системах Windows.

Всі випробування проводилися як порівняльні за ідентичних умов і режимів навантаження. Для випробувань було прийнято: чавунні колодки виробництва «ХК «Луганськтепловоз»); ЕМ-2 (6КВ-10) за ГОСТ 15960-70; 6КХ-1Б за ТУ 38-5-560-69; ретинакс А і Б (ФК-16А і ФК-24А) за ГОСТ 10851-73; стрічка азбестова типу Б і полімерний композит ТР-9 тощо.

Страницы: 1, 2


© 2010 Рефераты