Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками
p align="left">Після попередніх випробувань серійних матеріалів і модифікованих С-С композитів, що відрізняються типом вуглецевих волокон і структурою зміцнюючого каркаса, видом модифікатора тертя, кількісним і фракційним складом останнього, для доводочних випробувань було прийнято дев'ять типів найбільш перспективних композицій. Процес ущільнення піровуглецем проводився в потоці природного газу методом радіально рухомої зони піролізу, після чого заготовки піддавалися механічній обробці і шліфуванню робочої поверхні тертя алмазними дисками.Основними показниками для порівняння ефективності гальмівних колодок були прийняті величина і характер зміни коефіцієнта тертя залежно від інтегрального фактора - температури на контактній поверхні тертя, що узгоджується з вимогами Бюро експлуатаційних випробувань Міжнародного союзу залізниць (БЕВ МСЗ). Для обробки результатів випробувань гальмівних колодок із С-С композитів використано методи математичної статистики і теорії ймовірностей (рис. 4). Аналіз результатів випробувань показав, що математичне очікування величини коефіцієнта тертя за початкової температурі 20°С становить 0,451 і змінюється від 0,366 до 0,536 у межах , що становить 99,7% спостережуваних значень, а в межах змінюється від 0,395 до 0,507, що становить 95,4% отриманих експериментальних даних. Отже, модифіковані аморфним бором композити мають достатній початковий коефіцієнт тертя при температурі 20°С , однак особливо важливим є його стабілізація на рівні 0,45...0,55 у широкому діапазоні зміни температури поверхні тертя (20…500?С - за умовами випробувань). Фрикційна характеристика модифікованих аморфним бором С-С композитів (рис. 5), отримана методом математичного планування експерименту з урахуванням впливу питомого навантаження ( , МПа), швидкості ковзання на контакті (, м/с) і температури (, °C), має вид: Аналіз результатів показав, що з ростом швидкості ковзання і питомого навантаження величина коефіцієнта тертя повільно зменшується, а з ростом температури контактної поверхні теж повільно, але збільшується. Порівняння фрикційних властивостей модифікованих С-С композитів з металокерамічними (BM-41) і композиційними гальмівними колодками (929-1G) фірми «BECORIT» (рис. 6), сертифікованими МСЗ для використання на рухомому складі Європейських залізниць, свідчить про їхню відповідність існуючим вимогам. Ресурсні випробування з визначення зносостійкості проводилися за єдиною і ідентичною програмою навантаження; величина зношення визначалася масовим методом з подальшим перерахунком на лінійне зношення, при цьому контактна поверхня тертя становила не менш 80% від площі колодки. Особливо високою зносостійкістю відрізняються модифіковані С-С колодки, які мають зношування контактної поверхні в 6...9 разів менше звичайних фрикційних матеріалів і в 2,1...2,7 рази менше, ніж у існуючих композиційних колодок. Також встановлено, що найбільше руйнують матеріал контртіла (колісна сталь марки 2 - бандажі колісних пар) чавунні гальмівні колодки, при цьому зношування поверхні контртіла в 1,3...1,7 раза вище, ніж за модифікованих і «чистих» С-С колодок. Розрахунки дійсного гальмівного шляху (SД) тепловоза ТЕП 150 (рис. 7, а) за методикою ПТР при екстреному гальмуванні на площадці з швидкості 160 км/год при послідовному використанні стандартних чавунних колодок (1*), з підвищеним вмістом фосфору (2*), композиційних (3*) і С-С колодок (4*) показали, що нові С-С колодки забезпечують зменшення гальмівного шляху в порівнянні із чавунними більш ніж у два рази, а з композиційними - на 8...10%. Математичним моделюванням просторового руху локомотива з составом потяга (рис.7, б) по чистих і сухих рейках у режимі гальмування із чавунними і С-С колодками встановлено, що незалежно від фрикційних умов у контакті коліс із рейками для досягнення однієї й тієї ж величини гальмівного шляху необхідна величина натискання на С-С колодки є у два раза меншою. Отже, модернізація рухомого складу може бути виконана простою заміною серійних композиційних колодок на С-С колодки. Пропоновані гальмівні С-С колодки за своїми технічними і трибологічними характеристиками не поступаються кращим зразкам сучасних фрикційних матеріалів, а здатністю витримувати високу температурну напруженість на контактній поверхні тертя і забезпечувати достатньо високий і стабільний рівень коефіцієнта тертя перевершують останні. Розрахунки, експериментальні дослідження і пробні поїздки свідчать, що нові С-С колодки істотно підвищують ефективність процесу гальмування рейкового рухомого состава й одночасно справляють менш руйнівну механічну і термічну дію на поверхню катання коліс на гальмівних осях. У шостому розділі наведено результати експериментальних досліджень теплофізичних параметрів гальмівних C-C колодок з різними схемами зміцнюючих каркасів для рейкового рухомого складу, визначено основні закономірності виділення теплоти і представлено постановку та результати чисельного вирішення нестаціонарної теплової задачі теплопровідності для системи “гальмівні колодки - колесо - рейка”. У зв'язку зі складністю теоретичного опису механізму інтегральної теплової провідності в середовищі - композиті для визначення теплопровідності використовувалися емпіричні методи. На спеціальній стендовій установці випробуванням піддавалися дослідні зразки матеріалу С-С колодок, а в якості еталонного було використано чавунний зразок з відомою теплопровідністю. Для оцінки впливу на теплопровідність С-С композитів різних наповнювачів всі дослідні зразки виготовлялися на основі вуглецевої тканини і піровуглецю, а як модифікатор до складу №1 було включено мідний дріт, до складу №2 - карбід бору, до складу №3 - бор аморфний. Емпіричні залежності впливу якісного складу компонентів і їхнього процентного вмісту по масі на коефіцієнт теплопровідності С-С колодок отримано методом математичного планування експерименту. Характер зміни величини коефіцієнта теплопровідності від домінантних факторів (рис. 8) і емпіричні залежності мають вид: Погрішність апроксимації становить не більше ± 6,5% при довірчій імовірності . Встановлено, що для складу №1 коефіцієнт теплопровідності в досліджених діапазонах факторів впливу монотонно зростав від 34,3 до 45,6 Вт/(м?К). Для складу №2 коефіцієнт теплопровідності менше і діапазон зміни становив 22...36 Вт/(м?К), що пояснюється відсутністю мідного компонента. Склад №3 характеризується найбільш складним механізмом теплової провідності, однак забезпечує високе середньотемпературне значення коефіцієнта теплопровідності - 34 Вт/(м?К). Слід зазначити, що високу теплопровідність - 35...55 Вт/(м?К) мають серійні чавунні гальмові колодки, а з підвищеним вмістом фосфору і колодки типу Samson (P30) - 21...28 Вт/(м?К); композиційні колодки виробництва «ФРИТЕКС» типу ТIIР характеризуються величиною 0,8...3,3Вт/(м?К). Згідно із зарубіжними джерелами, композиційні і металокерамічні колодки мають цей показник на рівні 1,3 і 7,5 Вт/(м?К). Отже, нові С-С колодки з величини коефіцієнта теплопровідності незначно поступаються чавунним і мають більш високі показники в порівнянні з іншими фрикційними матеріалами. В основі моделювання нестаціонарних теплових процесів у твердих тілах лежить рівняння нестаціонарної теплопровідності. Для сплощених тіл, а такими прийняті ходові колеса, відповідне рівняння має вид: Гранична умова другого роду в зоні контакту колеса з рейкою, а також на поверхні контакту колеса з колодкою задавалася у виді густини нестаціонарного теплового потоку Тепловий потік у плямі контакту визначався з умови пропорційності теплового потоку, що виділяється в плямі контакту, потужності сил деформації колеса та рейки: Qк. = е•Е1N , а було прийнято рівним коефіцієнту дисипації механічної енергії при деформації. Роботу сил одиничної деформації Е01 з урахуванням її нестаціонарності було знайдено у виді У припущенні пропорційності потужності енерговиділення деформації на даному режимі руху обсягу деформованого матеріалу за одиницю часу було отримано розрахункову формулу Зазначені у виразах (24) і (25) змінні визначені за результатами розв'язку рівнянь динамічної контактної задачі у виді апроксимаційних залежностей. Тепловий потік при зміні швидкості руху в процесі гальмування визначався інтерполяцією значень функцій, отриманих при реперних значеннях швидкостей V = 40, 80, 120, 160 км/год (при убуванні швидкості до значень, менше 40 км/год відповідно екстраполяцією). Тепловий потік Qкк, що надходить від плями контакту в колесо, приймався рівним 0,5Qк відповідно до рекомендацій проф. О.Л. Голубенка. Тепловий потік у зоні тертя колодки об колесо при гальмуванні задавався для кожної ої ділянки згідно з виразом Розподіл потоків теплоти між колесом і колодкою визначався коефіцієнтом , запропонованим проф. В. Г. Іноземцевим. Для розв'язку нелінійного диференціального рівняння 2-го порядку (22) використовувався метод кінцевих різниць, при цьому площина колеса у декартових координатах ХУ розбивалася квадратною сіткою (рис. 9). Рівняння (22) для довільної точки (xi,yj,фk) поверхні колеса (у момент часу фk), а також граничні умови (23) приводились до кінцево-різницевого виду. Результати вирішення теплової задачі (графіки та комп'ютерні екранограми) наведено на рис.10 - 12. Згідно з результатами чисельного розв'язку рівняння (22) із граничними умовами (23) для випадку руху з постійною швидкістю = 160 км/год і при = 0 °С сталий перегрів поверхні катання коліс локомотива ТЕП 150 відносно атмосферного повітря склав 58 °С, при цьому максимальна температура в зоні контакту з рейкою не перевищувала 240 °С. Значення зазначених вище параметрів у режимі гальмування двома колодками із зусиллям натиснення 40 кН становило відповідно: для серійних композиційних колодок 462 °С і 563 °С; для стандартних чавунних та з фосфористого чавуну 235 °С і 345 °С та 249 °С і 363 °С, для дослідних С-С колодок 380 °С и 482 °С. При цьому температурна залежність для плями контакту має істотно нестаціонарний характер внаслідок нестаціонарності теплового потоку від гармонійних деформацій. Найбільший перегрів при гальмуванні було зафіксовано на контактній поверхні тертя “колодка - колесо” (рис. 10 і 11). Цей показник становив для серійних композиційних колодок 796 °С; для стандартних чавунних - 325°С, для фосфористого чавуну - 345 °С; і для дослідних С-С колодок - 668°С. Як випливає з аналізу результатів чисельних досліджень, дослідні гальмівні С-С колодки мають перевагу в порівнянні із серійними композиційними колодками з усіх термічних показників, що характеризують протікання теплових процесів у системі «гальмівна колодка-колесо-рейка» і можуть позитивно впливати на елементи вказаної системи (рис. 11, 12). Так, модифіковані С-С колодки дозволяють зменшити температурну напруженість контактного спряження пари тертя “колодка - колесо” на 20% у порівнянні із серійними композиційними гальмівними колодками. Результати моделювання нестаціонарного теплового процесу підтверджено експериментальними дослідженнями на стендовій установці та добре узгоджуються з даними, наведеними в роботах проф. В.Г. Іноземцева для стандартних чавунних і серійних композиційних колодок. Встановлені закономірності і математичні моделі дозволяють створювати і використовувати перспективні фрикційні матеріали з високими теплофізичними властивостями, що сприяє значному підвищенню ефективності гальмування рейкового рухомого складу поліпшенням умов взаємодії в системі “гальмівна колодка - колесо - рейка”, збільшенню довговічності і терміну служби як окремих елементів, так і системи у цілому. Сьомий розділ присвячено поліпшенню експлуатаційних характеристик та властивостей вузлів тертя в зчленуванні кузова і візків екіпажа з метою поліпшення характеристик і умов взаємодії рухомого складу і колії. Зчленування кузова і візків здійснюється за допомогою опорно-повертальних (ОПП) і шкворньових пристроїв. Кінематичні зв'язки дозволяють рамі візка переміщуватись щодо кузова на деяку величину dmax і повертатися на деякий кут , що сприяє зниженню силової взаємодії колеса і направляючої рейки в контактній зоні. При завищеному значенні моменту тертя в опорних пристроях утрудняється поворот візків щодо кузова в плані при вписуванні в криві, а при русі в прямих ділянках шляху спостерігається рух візків з перекосом. При цьому значно збільшується не тільки силовий вплив екіпажа на колію, але й тривалість взаємодії гребенів коліс із рейкою, що викликає інтенсивне зношування контактних поверхонь. Аналіз умов роботи ОПП тепловоза ТЕП 150 показав, що основною складовою моменту опору повороту є момент від сил тертя на контактній поверхні “ковзун - полімерна накладка”. Отже, необхідно забезпечити спряження головної пари тертя ОПП з досить низьким і стабільним коефіцієнтом тертя, раціональна величина якого за результатами моделювання руху екіпажа тепловоза ТЕП 150 встановлена в діапазоні 0,05...0,07, що підтверджено поїзними випробуваннями тепловоза 2ТЕ116. Використовуючи основні трибологічні принципи і ґрунтуючись на сучасних полімерах, розроблено технологічні схеми та способи виготовлення самозмащувальних матеріалів на основі капролону з наповнювачами у виді мінерального масла, дисульфід молібдену й лускатого графіту. Для експериментальних досліджень на стендовій установці, що імітує експлуатаційні умови за величиною і частотою прикладення вертикального і горизонтального навантажень, а також швидкості ковзання, були виготовлені натурні дослідні зразки з таких матеріалів: фторопласт-4, триболіт на основі вуглецевої тканини ВТФ, триболіт на основі бавовняної тканини БТФ, С-С композити з піровуглецевою матрицею, капролон В «У» маслонаповнений і графітонаповнений (табл. 2). Таблиця 2 Результати випробувань головної пари тертя опорних пристроїв тепловоза ТЕП 150 з полімерними накладками із графітонаповненого капролону Попередніми міцнісними випробуваннями встановлено, що весь спектр навантаження успішно витримують тільки полімерні накладки на основі капролону, які й було рекомендовано для ресурсних випробувань протягом 30 годин, що відповідає умовному пробігу в 300 тис. км. При ресурсних випробуваннях самозмащувального графітонаповненого капролону В «У» отримано результати, досить близькі до характеристик маслонаповненої композиції. Експериментальними дослідженнями натурних антифрикційних самозмащувальних матеріалів на основі капролону В, виготовлених за новою технологією і компонентним складом, встановлено, що ці матеріали мають достатні міцнісні та зносостійкі властивості, забезпечують стабільний коефіцієнт тертя в межах 0,05…0,07 у температурному діапазоні до 100?С і можуть ефективно використовуватися в опорно-повертальних пристроях рухомого складу з одноразовим введенням рідкого мастила при початковій установці опорних пристроїв на рухомий склад. Слід зазначити, що в процесі експлуатації не потрібне додавання змащення в опорні пристрої. Вдосконалення експлуатаційних характеристик опорних пристроїв дозволяє істотно (до 32%) зменшити момент опору повороту візків щодо кузова, кінематичну і силову взаємодію колеса з рейкою, а також роботу сил тертя в контактній зоні. ВИСНОВКИ У дисертації вирішено актуальну науково-технічну проблему підвищення ефективності гальмування рейкового рухомого складу поліпшенням умов взаємодії коліс із гальмівними колодками і рейками шляхом розвитку теорії та знайдення науково обґрунтованих технічних рішень, що забезпечують підвищення ефективності роботи гальмівних і опорно-повертальних пристроїв, зниження інтенсивності зношування елементів системи “гальмівна колодка - колесо - рейка” і підвищення строку їхньої служби. Теоретичні положення, математичні моделі і методи вирішення динамічних контактних задач взаємодії коліс із рейками, а також установлені закономірності контактної, фрикційної, динамічної і теплової взаємодії елементів у системі дозволили створити наукові основи поліпшення характеристик і умов взаємодії рухомого складу і колії. За результатами проведених теоретичних і експериментальних досліджень зроблено такі висновки. Одержала подальшого розвитку математична модель динамічної контактної взаємодії колеса і рейки з урахуванням осциляції ядер інтегральних рівнянь, принципу граничного поглинання і гармонійного збурення, що дозволило уточнити величину і характер розподілу контактних напружень. Уперше отримано теоретичне вирішення динамічної контактної задачі щодо вертикальних коливань колеса на пружній ізотропній рейці з використанням точної факторизації ядра інтегрального рівняння, що дозволило одержати аналітичні залежності для кутів зрушення фаз і модуля комплексної амплітуди коливань колеса. Отримано інтегральні рівняння для розв'язку контактних задач щодо руху колеса по пружній рейці і щодо руху клина в пружному шарі - рейці, що дозволяє виконати уточнені розрахунки колеса та рейки на міцність і жорсткість, а також прогнозувати розвиток тріщин і виконувати розрахунки на ресурс по втомному руйнуванню. З урахуванням динамічного характеру вертикальної компоненти контактних напружень удосконалено просторову математичну модель руху локомотива із составом потягу, що дозволяє виконати поглиблені дослідження процесів силової контактної взаємодії колеса з рейкою. Моделюванням руху екіпажа встановлено, що підвищення ефективності гальмування і поліпшення умов взаємодії рухомого складу і колії найбільш раціональним чином можуть бути досягнуті завдяки створенню і використанню принципово нових фрикційних матеріалів у системі колодкового гальмування, що спричиняють зниження теплонапруженості, зменшення зношування і руйнуючого впливу колодок на поверхню катання коліс, а також застосуванням в опорних пристроях антифрикційних матеріалів з низьким коефіцієнтом тертя для зменшення моменту опору повороту візків щодо кузова в плані. Розроблено теоретичне обґрунтування, компонентний склад, структура, технологічні схеми виготовлення і конструктивне виконання нових гальмівних С-С колодок на основі вуглець-вуглецевих композиційних матеріалів з піровуглецевою матрицею і модифікаторами тертя, які характеризуються високими та стабільними експлуатаційними властивостями в умовах зміни температури в широкому діапазоні. Уперше встановлено закономірності впливу на фрикційні характеристики якісного, кількісного й фракційного складу різних компонентів і модифікаторів тертя, що дозволяє створювати перспективні гальмівні колодки із заданими параметрами. Уперше встановлені фрикційні характеристики гальмівного спряження “колісна сталь марки 2 - С-С колодки” у виді емпіричних залежностей від температури поверхні тертя, швидкості ковзання і питомого навантаження, які використовуються для розрахунків гальмівного шляху, часу гальмування та уповільнення, а також для створення автоматизованої системи регулювання і управління процесом гальмування. Експериментальним шляхом визначено закономірності впливу різних компонентів і їхнього масового вмісту на коефіцієнт теплопровідності С-С колодок, що дозволяє створювати перспективні гальмівні колодки, котрі сприяють інтенсивному відводу теплоти із зони тертя і зменшують температурну напруженість на 20% і більше в порівнянні із серійними композиційними. Встановлено, що гальмівні С-С колодки, модифіковані гібридним зміцнюючим каркасом з мідною сіткою, карбідом бору та бором аморфним, мають коефіцієнт теплопровідності 20...48 Вт/(м·К), при середньотемпературному значенні відповідно 40, 29 та 34 Вт/(м·К), що значно перевищує аналогічні показники колодок типу ТІІР або фірми «BECORIT» - 0,8…3,3 Вт/(м·К). Поставлено й вирішено методом кінцевих різниць теплову задачу нестаціонарного теплообміну в системі “гальмівні колодки - колесо - рейка”. Моделюванням встановлено часові і швидкісні характеристики зміни температури у фрикційних і контактних зонах для режимів руху, зупинного і екстреного гальмування в умовах застосування різних гальмівних колодок. Дослідні С-С колодки мають перевагу в порівнянні з композиційними до 20% по всіх термічних показниках. Перегрів поверхні тертя “колодка - колесо” у випадку екстреного гальмування на площадці тепловоза ТЕП 150 з початкової швидкості 160 км/год і натисненні на колодку 40 кН при роботі з композиційними колодками отримано на рівні 800°С, для чавунних і фосфористих колодок - 325 і 345°С, а для С-С колодок - 668°С. Математичне моделювання просторового руху локомотива із составом вагонів без заклинювання коліс, експерименти та пробні поїздки показали, що незалежно від фрикційних умов у контакті коліс із рейками для досягнення однієї й тієї ж величини гальмівного шляху натиснення на С-С колодки має бути у два рази менше, ніж для чавунних колодок. Дійсний гальмівний шлях при розрахунках за методикою ПТР і гальмуванні С-С колодками більш ніж у два рази менше, ніж при чавунних колодках, і на 8...10% менше, ніж при використанні серійних композиційних колодок. Розроблено компонентний склад, структуру і засоби виготовлення антифрикційних самозмащувальних композиційних матеріалів на основі капролону В «У» з наповнювачами у виді мінерального масла, дисульфід молібдену й лускатого графіту, що характеризуються низьким і стабільним коефіцієнтом тертя в межах 0,05...0,07 при температурному режимі контактної поверхні тертя в діапазоні до 100°С. Експериментальними дослідженнями встановлено, що для полімерних накладок на основі капролону достатнім є введення рідкого мастила на поверхню тертя при початковій установці. Зниження моменту тертя в опорних пристроях становить більше 30 % у порівнянні з серійними, що поліпшує умови взаємодії коліс із рейками при русі в кривих і прямих ділянках шляху, зменшує силовий вплив, роботу сил тертя, інтенсивність зношування та підвищує термін служби коліс і рейок. Розроблено і створено лабораторні, стендові та натурні експериментальні установки з вимірювально-реєструючими комплексами і програмним забезпеченням для проведення комплексних експериментальних досліджень, результати яких дозволили виконати оцінку адекватності теоретичних положень і розроблених математичних моделей реальним процесам у системі “гальмівна колодка - колесо - рейка”, при цьому розбіжність результатів з експериментальними даними не перевищує 15 %. Практична цінність роботи підтверджена актами впровадження отриманих результатів «ХК «Луганськтепловоз» і ВАТ «ЛуганськПТІмаш» при створенні тепловоза ТЕП 150, у процесі проектування і розробки тепловозів, дизель - і електропоїздів ДПЛ-2, ДЕЛ-02, ЕПЛ 9Т, трамвайних вагонів. Економічний ефект від впровадження результатів наукової роботи наразі уточнюється в процесі дослідної експлуатації виробів з нових матеріалів на рухомому складі. Основні наукові результати дисертаційної роботи використовуються в науково-дослідній роботі і навчальному процесі при підготовці бакалаврів, фахівців, магістрів і аспірантів за фахом «Рухомий склад і спеціальна техніка залізничного транспорту» Східноукраїнського національного університету імені Володимира Даля. СПИСОК РОБІТ, ОПУБЛІКОВАНИХ АВТОРОМ 1. Старченко В.Н. Некоторые вопросы теории контактного взаимодействия колеса и рельса / СНУ ім. В. Даля. - Луганськ: 2006. - 120 с. - Библиогр.: С. 112-117. 2. Старченко В.Н., Бурка М.Л., Сидоров Н.П. Особенности характеристик сдвига резинометаллических опор кузова тепловоза // Конструирование и производство транспортных машин: Респ. межвед. научн.-техн. сб. Вып. 21. - Харьков: Вища щкола. 1989. - С. 41- 45. 3. Старченко В.Н., Шевченко С.И., Хухлей С.К. Новые конструкции тормозов транспортных машин // Вестник Восточноукраинского государственного университета, отдельный выпуск. Транспорт. - Луганськ, 1996. - С. 19-23. 4. Старченко В.Н., Шевченко С.И., Белоус В.В. К вопросу исследования тормозных устройств с колодками плавающего типа // Cер. Транспорт: Зб. наук. праць СУДУ, юбил. выпуск. - Луганськ, 1998. - С. 73-80. 5. Старченко В.Н., Шевченко С.И., Белоус В.В. О возможности применения аналого-цифровых преобразователей при экспериментальных исследованиях // Вісник СУДУ. - Луганськ, 2000. - №6 (28). - C. 36-40. 6. Старченко В.Н. К вопросу о трении и сцеплении при взаимодействии колеса с рельсом // Вісн. Східноукр. нац. ун-ту. - Луганськ, 2003. - №9 (67). - С. 129-135. 7. Старченко В.Н. Трение и сцепление при взаимодействии колеса с рельсом в процессе торможения // Сборник научных трудов НГУ. - Днепропетровск. Национальный горный университет, 2004. - Т. 4, №19. - С. 100-108. 8. Старченко В.Н., Полупан Е.В., Шевченко С.И. Повышение эффективности торможения использованием новых углерод-композиционных материалов // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2004. - №7[77]. Частина1. - С. 137-142. 9. Старченко В.Н., Шевченко С.И., Полупан Е.В. Исследование влияния характера нарастания тормозного момента на динамические нагрузки механизмов машин // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2004. - №7 (77). Частина 2. - С. 48-52. 10. Старченко В.Н. Динамическая контактная задача об угловых колебаниях жёсткого колеса на рельсе (часть 1) // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2004. -№8 (78), Частина 1. - С. 24-28. 11. Старченко В.Н. Динамическая контактная задача об угловых колебаниях жёсткого колеса на рельсе (часть 2, окончание) // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2004. - №8 (78), Частина 1. - С. 29-32. 12. Старченко В.Н., Полупан Е.В. Анализ влияния температуры трения на надёжность и долговечность работы тормозного устройства // Подъёмно-транспортная техника, № 1(9). - 2004. С. 49-53. 13. Старченко В.М., Поляков В.М. Випробування нових фрикційних матеріалів для гальмування транспортних засобів // Вісник Національного транспортного університету. - К.: НТУ, 2004. - Випуск 9. - С. 283-287. 14. Старченко В.Н., Гурин В.А., Полупан Е.В., Гурин И.В. Триботехнические характеристики новых фрикционных материалов // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2005. - №8[90]. Частина1. - С. 121-126. 15. Старченко В.Н. Расчёт упругих характеристик пространственно армированных фрикционных углерод-углеродных композиционных материалов // Автомобильный транспорт: Сборник научных трудов. - Харьков: ХНАДУ. - 2005. - Вып. 16. - С. 117-122. 16. Старченко В.Н., Буряк В.Г. Пространственная динамическая смешанная задача о сдвиге упругого полупространства // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2005. - №6 (88). - С. 51-56. 17. Старченко В.Н., Буряк В.Г. Динамическая контактная задача о взаимодействии колеса с рельсом // Вісник ДНУЗТ ім. акад. В. Лазаряна.- Д.: Дніпропетр. нац. ун-т залізн. транспорту. - 2005. - Вип. 8. - С. 170-175. 18. Старченко В.Н., Буряк В.Г. Динамічна контактна задача руху колеса по пружному шару // Управління проектами, системний аналіз і логістика. - К.: НТУ. - 2005. - Вип.2. - С. 121-124. 19. Старченко В.Н. Пространственная динамическая контактная задача для упругого полупространства // Збірник наукових праць НГУ. - Дніпропетровськ: Національний гірничий університет. - 2005.- №21.- С. 21-28. 20. Старченко В.Н. Антифрикционные полимерные материалы для опорных устройств подвижного состава железных дорог // Наука, техника и высшее образование. Сб. научн. тр., Вып. 2. Изд-во Ростовского университета. - 2006. - С. 57-58. 21. Старченко В.Н., Гурин В.А., Быкадоров В.П., Шапран Е.Н. Фрикционные материалы на базе углерод-углеродных и углерод-асбестовых волокон для тормозных устройств // Железные дороги мира - 2006. -№ 2. - С. 38-42. 22. Старченко В.Н. Расчёт упругих характеристик фрикционных углеродных композитов для подвижного состава // Вісник ДНУЗТ ім. В. Лазаряна. - Д.: ДНУЗТ. - 2006. Вип. 11. - С. 160-166. 23. Басов Г.Г., Старченко В.Н., Чесноков В.В., Нестеренко В.И., Бурка М.Л., Паранич А.А. Экспериментальные исследования новых материалов для опорно-возвращающих устройств подвижного состава // Збірник наукових праць НГУ.- Дніпропетровськ: Національний гірничий університет. - 2006. - № 24. - С. 105-110. 24. Старченко В.Н., Полупан Е.В. Исследование теплового состояния фрикционных накладок тормозных устройств транспортных машин // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2006. - №7 (101). - С.56-61. 25. Голубенко А.Л., Старченко В.Н. Решение динамической контактной задачи с ограничением при взаимодействии колеса и рельса // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2006. - №8 (102), Частина 1. - С. 19-25. 26. Голубенко А.Л., Старченко В.Н., Гурин И.В. Фрикционные углерод-углеродные композиты для тормозных устройств подвижного состава // Вісн. Східноукр. нац. ун-ту. - Луганск, 2006. - №8 (102), Частина 2. - С. 256-261. 27. Старченко В.Н. Трибологические свойства фрикционных С-С композитов для тормозных устройств подвижного состава // Вісн. Східноукр. нац. ун-ту. - Луганськ, 2007. - № 6 (112). - С. 48-52. 28. Старченко В.Н. Контактные напряжения при динамическом взаимодействии колеса с рельсом // Вісн. Східноукр. нац. ун-ту. - Луганськ, 2007. - № 8 (114), Частина 1. - С. 59-63. 29. Старченко В.Н. Исследование теплофизических параметров фрикционных С-С композитов // Вісн. Східноукр. нац. ун-ту. - Луганськ, 2007. - № 8 (114), Частина 2. - С. 226-229. 30. Упругое колесо рельсового транспортного средства: А.с. 1659232. СССР. МКИ В60В 9/12 / Старченко В.Н., Бучный А.И. (SU). - № 4333909/11; Заявл. 15.10.87; Опубл. 30.06.91, Бюл. №24. - 5 с. 31. Двосекційна гальмова колодка: Патент на корисну модель 17933. Україна. МПК (2006) F16D 65/04 / Старченко В.М., Шевченко С.І., Полупан Є.В. (UA). № u 2006 04585; Заявл. 25.04.06; Опубл. 16.10.06, Бюл. №10. - 2 с. 32. Композитний матеріал на основі вуглець-вуглець для фрикційних елементів: Патент на винахід №82267. Україна. МПК С04В 35/83, С04В 35/52, F16D 69/00/ Старченко В.М., Полупан Є.В., Шевченко С.І. (UA). Заявл. 03.05.2006; Опубл. 25.03.08, Бюл. №6. - 4 с. 33. Старченко В.Н. Динамическая контактная задача о вертикальных колебаниях жёсткого колеса на упругом изотропном рельсе // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2005. - №8 (90). Частина 1. - С. 94-98. 34. Старченко В.М., Буряк В.Г. Динамічна задача про рух клина у пружному шарі // Збірник наукових праць НГУ. - Дніпропетровськ: Національний гірничий університет, - 2005. - №21. - С. 16-21. 35. Старченко В.Н. Ограниченное решение динамической контактной задачи о взаимодействии колеса с рельсом // Збірник наук. праць НГУ. - Дніпропетровськ. Національний гірничий університет, - 2006. - №24. - С. 110-113. 36. Старченко В.Н., Шевченко С.И. Измерительная система для диагностики и испытания тормозных устройств транспортных машин // Вісн. Східноукр. нац. ун-ту ім. В. Даля. - Луганськ, 2006. - №7 (101). - С. 193-196. 37. Старченко В.Н. Фрикционные углерод-углеродные композитные материалы для дисковых тормозов подвижного состава // Наука, техника и высшее образование: Сб. научн. тр. - Изд-во Ростовского университета. - 2006. - Вып. 2. - С. 57-58. 38. Старченко В.Н., Полупан Е.В. Тепловые процессы при колодочном торможении фрикционными С-С композитами // Вісн. Східноукр. нац. ун-ту. - 2007. - № 6 (112), Частина 2. - С. 227-230. 39. Старченко В.Н., Хухлей С.К., Шевченко С.И. Новое конструктивное решение тормозных устройств транспортных машин // Проблемы развития локомотивостроения: 5-я Межд. научн.-техн. конф., Алушта, октябрь 1995. 40. Старченко В.Н., Шевченко С.И., Хухлей С.К. Установка для диагностирования и испытания тормозных устройств транспортных машин //Автоматизация проектирования и производства изделий в машиностроении: Межд. научн.-практ. конф.,Луганск, 1996. 41. Старченко В.Н., Шевченко С.И., Панфилов Д.А. Новая конструкция тормозной системы транспортных машин // Автоматизация проектирования и производства изделий в машиностроении: Межд. научн.-практ. конф., Луганск, 1996. 42. Старченко В.Н., Шевченко С.И., Хухлей С.К. Автоматизированная обработка экспериментальных данных // Проблемы развития рельсового транспорта: 7-я Межд. научн.-техн. конф., Крым, Ливадия, сентябрь 1997. 43. Старченко В.Н. Трение и сцепление при взаимодействии колеса с рельсом // Проблемы механики железнодорожного транспорта: XI -я Межд. конф., ДНУЗТ им. акад. В. Лазаряна, Днепропетровск. - 2004. - С. 156. 44. Старченко В.Н. Трение и сцепление при взаимодействии колеса с рельсом в процессе торможения // Проблемы механики горно-металлургического комплекса: Межд. научн.-техн. конф., НГУ, Днепропетровск. - 2004. - С. 30. 45. Старченко В.Н., Гурин В.А. Фрикционные углерод - композиционные материалы для транспортной техники // Залізничний транспорт України, Спеціальний випуск №3/1. Матеріали Міжнародної науково-практичної конференції «Наука в транспортному вимірі». - К., 2005. - С. 256. 46. Старченко В.Н. Расчёт упругих характеристик углерод-композиционных материалов для транспортной техники // Залізничний транспорт України, Спеціальний випуск №3/1. Матеріали Міжнародної науково-практичної конференції «Наука в транспортному вимірі». - К., 2005. - С. 255. 47. Старченко В.Н. Новые фрикционные углерод-углеродные композиты для тормозных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 65-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2005. - С. 77. 48. Старченко В.Н. Расчёт упругих характеристик фрикционных композитов для тормозных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 65-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2005. - С. 33-34. 49. Старченко В.Н. Новые антифрикционные материалы для опорных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 66-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2006. - С. 103-104. 50. Старченко В.Н. Новые фрикционные материалы для дисковых тормозов подвижного состава // Наука в транспортном измерении: Пассажирские перевозки: 2-я Межд. научн.-практ. конф., Укрзалізниця, Киев, 2006 г. - С. 32. 51. Старченко В.Н. Повышение эффективности работы опорно-возвращающих устройств подвижного состава // Наука в транспортном измерении: Пассажирские перевозки: 2-я Межд. научн.- практ. конф., Укрзалізниця, Киев, июнь 2006 г. - С. 33. 52. Старченко В.Н., Кузнецова М.Н. Фрикционные С-С композиты для тормозных устройств подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 67-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2007. 53. Старченко В.Н. Новые антифрикционные материалы для опорных устройств тележек подвижного состава // Проблемы и перспективы развития железнодорожного транспорта: 67-я Межд. научн.-практ. конф., Днепропетровск, ДНУЖТ им. акад. В. Лазаряна, 2007. 54. Старченко В.Н., Кузнецова М.Н. Исследование теплофизических параметров фрикционных С-С композитов для тормозных устройств транспортных машин // XII -я Межд. конф., ДНУЗТ им. акад. В. Лазаряна, Днепропетровск. - 2008. 55. Старченко В.Н. Повышение эффективности торможения рельсового подвижного состава применением фрикционных С-С композитов // XII -я Межд. конф., ДНУЗТ им. акад. В. Лазаряна, Днепропетровск. - 2008. 56. Упругое зубчатое колесо: А.с. 1456672. СССР. МКИ F16H 55/14, 1/26 / Старченко В.Н., Беляев А.И., Бучный А.И. (SU) - №4264646/25-28; Заявл. 17.06.87; Опубл. 07.02.89, Бюл. №5, - 8 с. 57. Тормоз: А.с. 1492850. СССР. МКИ F16D 49/20 / Старченко В.Н. (SU) - №4237166/31-27; Заявл. 11.03.87; Опубл. 07.02.89, Бюл. №5, - 6 с. 58. Тормоз: А.с. 1581925. СССР. МКИ F16D 49/20 / Старченко В.Н. (SU) -№4255264/31-27; Заявл. 01.06.87; Опубл. 30.07.90, Бюл. №28, - 6 с. 59. Самоустанавливающееся зубчатое колесо: А.с. 1698532. СССР. МКИ F16H 1/26, B61C 9/06, F16H 55/14 / Старченко В.Н., Август В.В. (SU) - 4746627/28; Заявл. 09.10.89; Опубл. 15.12.91, Бюл. №46, - 6 с. 60. Колодкове гальмо: Деклараційний патент на корисну модель. 8057. Україна. МПК B66D 5/08, F16D 65/00/ Старченко В.М., Шевченко С.І., Полупан Є.В.(UA) - № u 200500185; Заявл. 10.01.2005; Опубл. 15.07.05, Бюл. №7,-4 с. 61. Колодкове гальмо: Деклараційний патент на корисну модель. 8059. Україна. МПК B66D 5/08, F16D 65/04 / Шевченко С.І., Старченко В.М., Полупан Є.В. (UA) - № u 200500191; Заявл. 10.01.2005; Опубл. 15.07.05, Бюл. №7,-4 с. 62. Фрикційний диск: Патент на корисну модель. 17934. Україна. МПК F16D 65/12, F16D 69/02 / Старченко В.М., Шевченко С.І., Полупан Є.В. (UA) -№ u 2006 04587; Заявл. 25.04.06; Опубл. 16.10.06, Бюл. №10, - 2 с. АННОТАЦИЯ Старченко В.Н. Научные основы повышения эффективности торможения улучшением условий взаимодействия колёс с тормозными колодкам и рельсами. - Рукопись. Диссертация на соискание научной степени доктора технических наук по специальности 05.22.07 - Подвижной состав железных дорог и тяга поездов, Восточноукраинский национальный университет имени Владимира Даля, Луганск, 2008. В диссертационной работе приведены результаты теоретического обобщения и решения научно-технической проблемы повышения эффективности торможения улучшением условий взаимодействия колёс с тормозными колодками и рельсами путём развития теории и разработки научно обоснованных технических решений, обеспечивающих повышение эффективности работы тормозных и опорно-возвращающих устройств, улучшение характеристик и условий взаимодействия подвижного состава и пути. Предложена концепция решения динамических контактных задач для системы “колесо - рельс” в двумерной и пространственной постановках с учётом осцилляции ядер интегральных уравнений и принципа предельного поглощения, характеризующего внутреннее трение. Это позволило уточнить зависимости для оценки уровня и характера распределения контактных напряжений и силы сцепления при взаимодействии подвижного состава и пути. Приведено теоретическое решение динамической контактной задачи о вертикальных колебаниях колеса при взаимодействии с упругим рельсом на основе точной факторизации функций ядра интегрального уравнения, при этом установлены аналитические зависимости для угла сдвига фаз и модуля комплексной амплитуды колебаний колеса. Усовершенствована пространственная математическая модель движения локомотива с учётом возмущений от воздействия неровностей поверхности катания колеса, установлены доминантные факторы и степень их влияния на уровень силового взаимодействия колеса с рельсом. Показано, что взаимодействие колёс с изношенным профилем поверхности катания с новыми или изношенными рельсами существенно увеличивает горизонтальные поперечные ускорения и перемещения, динамические горизонтальные и рамные силы (на 15…30%). При движении в кривых участках пути и взаимодействии стандартных профилей колеса и рельса устойчивое влияние на уровень горизонтальных сил в системе “экипаж - путь” оказывает величина момента сопротивления повороту тележки относительно кузова, при этом отмечается рост боковых и рамных сил (до 11…27%). Для улучшения условий взаимодействия в системе “тормозная колодка - колесо - рельс” предложено использовать новые разработанные фрикционные материалы в системе колодочного торможения, которые обеспечивают эффективное торможение и оказывают менее разрушающее воздействие на поверхность катания колёс, а также антифрикционные материалы в опорных устройствах с низким коэффициентом трения для снижения момента сопротивления повороту тележек относительно кузова. Разработаны теоретические основы расчёта, компонентный состав, способы изготовления и конструктивное исполнение новых тормозных С-С колодок на основе углерод - углеродных волокон с пироуглеродной матрицей и модификаторами трения, которые характеризуются высокими и стабильными эксплуатационными свойствами, а также хорошими теплофизическими показателями в широком температурном диапазоне. Установлены закономерности влияния на фрикционные характеристики С-С колодок качественного, количественного и фракционного состава различных компонентов, а также влияние на величину и стабильность коэффициента трения давления, скорости скольжения и температуры на контактной поверхности сопряжения. Впервые установлены теплофизические характеристики и закономерности влияния различных компонентов на теплопроводность модифицированных С-С колодок. Экспериментальными исследованиями установлено, что гибридные С-С колодки с включением сетки из медной проволоки имеют коэффициент теплопроводности в диапазоне 20…48 Вт/(м?К), что позволяет уменьшить температурную напряжённость в контактной зоне “тормозная колодка - колесо” на 20% и более по сравнению с композиционными колодками. Показано расчётами на математической модели пространственного движения локомотива с составом вагонов и по методике ПТР, что независимо от фрикционных условий в контакте колёс с рельсами для достижения одной и той же величины тормозного пути нажатие на С-С колодки должно быть в два раза меньше, чем для чугунных колодок. Действительный тормозной путь при равном нажатии уменьшается более чем в два раза в сравнении с чугунными и на 8…10% меньше - в сравнении с композиционными колодками. Путём численного моделирования нестационарного теплового процесса, который сопровождает процесс колодочного торможения рельсового подвижного состава, установлено, что опытные С-С колодки имеют существенные преимущества (до 20 и более процентов) в сравнении с серийными композиционными колодками по всем термическим показателям, в том числе и по теплонапряженности поверхности катания колёс. Разработаны для использования в опорных устройствах антифрикционные самосмазывающиеся полимерные накладки на основе капролона с наполнителями в виде минерального масла, дисульфид молибдена и чешуйчатого графита, которые характеризуются низким и стабильным коэффициентом трения, что способствует улучшению условий взаимодействия колеса и рельса за счёт снижения момента сопротивления повороту тележек относительно кузова. Теоретические положения и разработанные математические модели, на основании которых приняты технические решения, адекватны реальным процессам в системе “тормозная колодка - колесо - рельс”, что подтверждено комплексными экспериментальными исследованиями. Научно-практические результаты работы являются основой повышения эффективности торможения и улучшения условий взаимодействия подвижного состава и пути, а также уменьшения интенсивности изнашивания элементов системы “тормозная колодка - колесо - рельс” и повышения срока их службы. Ключевые слова: взаимодействие подвижного состава и пути, контактные напряжения, моделирование, фрикционные материалы, С-С колодки, торможение, коэффициент трения, износ, тепловые процессы, температура, срок службы. АНОТАЦІЯ Старченко В.М. Наукові основи підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками. - Рукопис. Дисертація на здобуття наукового ступеня доктора технічних наук за фахом 05.22.07 - Рухомий склад залізниць і тяга поїздів, Східноукраїнський національний університет імені Володимира Даля, Луганськ, 2008. У дисертаційній роботі наведено результати теоретичного узагальнення і вирішення науково-технічної проблеми підвищення ефективності гальмування поліпшенням умов взаємодії коліс з гальмівними колодками і рейками завдяки розвитку теорії і використання нових науково обґрунтованих технічних рішень, що забезпечують підвищення ефективності роботи гальмівних та опорно-повертальних пристроїв, зниження інтенсивності зношування елементів системи «гальмівна колодка-колесо-рейка» і підвищення терміну служби. Запропоновано концепцію і методи вирішення динамічних контактних задач для системи “колесо - рейка” в двовимірній і просторовій постановках з урахуванням осциляції ядер інтегральних рівнянь і принципу граничного поглинання, який характеризує внутрішнє тертя, що дозволило уточнити залежності для оцінки рівня і характеру розподілу контактного напруження, а також величини сили зчеплення при взаємодії рухомого складу і колії. Розроблено нові гальмівні С-С колодки на основі вуглець - вуглецевих волокон з піровуглецевою матрицею і модифікаторами тертя для гальмівних пристроїв рухомого складу, а також антифрикційні самозмащувальні матеріали на основі капролону з наповнювачами у виді мінерального масла, дисульфіду молібдену і лускатого графіту для опорних пристроїв, котрі сприяють поліпшенню умов взаємодії в системі “гальмівна колодка-колесо-рейка”. Шляхом чисельного моделювання нестаціонарного теплового процесу, що супроводжує процес колодкового гальмування рейкового рухомого складу, встановлено, що дослідні С-С колодки мають істотні переваги (до 20 і більше відсотків) у порівнянні із серійними композиційними колодками з усіх термічних показників, зокрема, щодо теплонапруженості поверхні тертя. Теоретичні положення і розроблені математичні моделі, на підставі яких створено технічні рішення, адекватні реальним процесам в системі “гальмівна колодка - колесо - рейка”, що підтверджено комплексними експериментальними дослідженнями. Ключові слова: взаємодія рухомого складу і колії, контактне напруження, моделювання, фрикційні матеріали, С-С колодки, гальмування, коефіцієнт тертя, зношення, температура, теплові процеси, термін служби. THE SUMMARY Starchenko V.N. Scientific bases of increase of efficiency of braking by improvement of conditions of interaction of wheels with brake block and rails. - Manuscript. The dissertation on competition for the degree Doctor of technical Sciences on the speciality 05.22.07 - the rolling stock of railways and traction of trains. East - Ukrainian National University named after V. Dal, Lugansk, 2008. In dissertational work results of theoretical generalization and the decision of a scientific and technical problem of development of the theory and improvement of conditions of interaction of system brake block - a wheel - a rail are resulted by use of the new scientifically-grounded technical decisions providing increase of an overall performance of brake devices, decrease of intensity of wear process of elements of system and increase of term of their service. The concept of the decision of dynamic contact problems about interaction of a wheel and a rail with the account oscillation nucleus of the integrated equations and a principle of the limiting absorption describing internal friction that has allowed to specify contact pressure and forces of coupling at spatial modeling movement of the locomotive is offered, and also to establish possible ways of perfection bogie crews. Perfection of crews by use of frictional materials on basis C-C composites in brake systems and antifrictional self-lubricated materials on a basis caprolon in basic devices, is a basis of the decision of a problem of improvement of conditions of interaction in system “brake block - a wheel - a rail”, increases of efficiency of braking, reduction of intensity of wear process of elements of system and increase of term of their service. Theoretical positions and the developed mathematical models on the basis of which technical decisions are accepted, are completely adequate to real processes in system brake block - a wheel - a rail that is confirmed with complex experimental researches. Keywords: interaction of a rolling stock and way, contact pressure, modeling, frictional materials, C-C composites, braking, deterioration, thermal processes, temperature, service life.
Страницы: 1, 2
|